These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 2993220)

  • 21. Adaptation and recovery from adaptation in single fiber responses of the cat auditory nerve.
    Chimento TC; Schreiner CE
    J Acoust Soc Am; 1991 Jul; 90(1):263-73. PubMed ID: 1652600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Modeling the process of excitatory transmission from the mechanical portion of the auditory system to the nerve endings of the auditory nerve].
    Babkina IN; Molchanov AP
    Biofizika; 1978; 23(3):532-7. PubMed ID: 667157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The frequency selectivity of auditory nerve fibres and hair cells in the cochlea of the turtle.
    Crawford AC; Fettiplace R
    J Physiol; 1980 Sep; 306():79-125. PubMed ID: 7463380
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Features of neurophysiological mechanisms of fast hearing adaptation].
    Chaĭka SP; Chudnovskiĭ SI; Poliakov AN
    Fiziol Zh (1978); 1988; 34(1):33-8. PubMed ID: 3366269
    [No Abstract]   [Full Text] [Related]  

  • 25. Rapid adaptation depends on the characteristic frequency of auditory nerve fibers.
    Westerman LA; Smith RL
    Hear Res; 1985 Feb; 17(2):197-8. PubMed ID: 4008356
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computing auditory fatigue of the whole nerve action potential.
    Gans DP
    J Acoust Soc Am; 1981 Sep; 70(3):712-4. PubMed ID: 7288034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Adaptation in auditory-nerve fibers: a revised model.
    Smith RL; Brachman ML
    Biol Cybern; 1982; 44(2):107-20. PubMed ID: 7115787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantal analysis of the size of excitatory post-synaptic potentials at synapses between hair cells and afferent nerve fibres in goldfish.
    Furukawa T; Hayashida Y; Matsuura S
    J Physiol; 1978 Mar; 276():211-26. PubMed ID: 206683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive rundown of excitatory post-synaptic potentials at synapses between hair cells and eight nerve fibres in the goldfish.
    Furukawa T; Matsuura S
    J Physiol; 1978 Mar; 276():193-209. PubMed ID: 650439
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cationic influences upon synaptic transmission at the hair cell-afferent fiber synapse of the frog.
    Cochran SL
    Neuroscience; 1995 Oct; 68(4):1147-65. PubMed ID: 8544989
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The effects of cochlear hypothermia on compound action potential tuning.
    Shore SE; Nuttall AL
    J Acoust Soc Am; 1985 Feb; 77(2):590-8. PubMed ID: 3973230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Frequency selectivity of the normal guinea pig cochlea and in experimental hearing loss].
    Tavartkiladze GA; Kharrison RV
    Fiziol Zh SSSR Im I M Sechenova; 1985 Apr; 71(4):461-5. PubMed ID: 3996676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of AP and ABR tuning curves in the guinea pig.
    Brown CJ; Abbas PJ
    Hear Res; 1987; 25(2-3):193-204. PubMed ID: 3558128
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of adaptation and recovery from adaptation in the cat auditory-nerve neurophonic.
    Chimento TC; Schreiner CE
    J Acoust Soc Am; 1990 Aug; 88(2):857-64. PubMed ID: 2212311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changes in the synaptic region of auditory hair cells during noise-induced temporary threshold shift.
    Mulroy MJ; Fromm RF; Curtis S
    Hear Res; 1990 Nov; 49(1-3):79-87. PubMed ID: 2292510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiple reservoir model of neurotransmitter release by a cochlear inner hair cell.
    Schwid HA; Geisler CD
    J Acoust Soc Am; 1982 Nov; 72(5):1435-40. PubMed ID: 6129270
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Single-tone intensity discrimination based on auditory-nerve rate responses in backgrounds of quiet, noise, and with stimulation of the crossed olivocochlear bundle.
    Winslow RL; Sachs MB
    Hear Res; 1988 Sep; 35(2-3):165-89. PubMed ID: 3198509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transfer characteristic of the inner hair cell synapse: steady-state analysis.
    Zagaeski M; Cody AR; Russell IJ; Mountain DC
    J Acoust Soc Am; 1994 Jun; 95(6):3430-4. PubMed ID: 8046135
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forward masking of the auditory nerve neurophonic (ANN) and the frequency following response (FFR).
    Snyder RL; Schreiner CE
    Hear Res; 1985; 20(1):45-62. PubMed ID: 4077744
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovering from long-term and short-term adaptation of the whole nerve action potential.
    Abbas PJ
    J Acoust Soc Am; 1984 May; 75(5):1541-7. PubMed ID: 6736416
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.