These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 29932331)

  • 21. Molecular dynamics simulation study of the "stay or leave" problem for two magnesium ions in gene transcription.
    Wu S
    Proteins; 2017 Jun; 85(6):1002-1007. PubMed ID: 28205291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A quantum mechanical investigation of possible mechanisms for the nucleotidyl transfer reaction catalyzed by DNA polymerase beta.
    Bojin MD; Schlick T
    J Phys Chem B; 2007 Sep; 111(38):11244-52. PubMed ID: 17764165
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Active site dynamics and combined quantum mechanics/molecular mechanics (QM/MM) modelling of a HIV-1 reverse transcriptase/DNA/dTTP complex.
    Rungrotmongkol T; Mulholland AJ; Hannongbua S
    J Mol Graph Model; 2007 Jul; 26(1):1-13. PubMed ID: 17046299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Understanding the effect of magnesium ion concentration on the catalytic activity of ribonuclease H through computation: does a third metal binding site modulate endonuclease catalysis?
    Ho MH; De Vivo M; Dal Peraro M; Klein ML
    J Am Chem Soc; 2010 Oct; 132(39):13702-12. PubMed ID: 20731347
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mismatch-induced conformational distortions in polymerase beta support an induced-fit mechanism for fidelity.
    Arora K; Beard WA; Wilson SH; Schlick T
    Biochemistry; 2005 Oct; 44(40):13328-41. PubMed ID: 16201758
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defining the catalytic metal ion interactions in the Tetrahymena ribozyme reaction.
    Shan S; Kravchuk AV; Piccirilli JA; Herschlag D
    Biochemistry; 2001 May; 40(17):5161-71. PubMed ID: 11318638
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Kinetic and thermodynamic analysis defines roles for two metal ions in DNA polymerase specificity and catalysis.
    Gong S; Kirmizialtin S; Chang A; Mayfield JE; Zhang YJ; Johnson KA
    J Biol Chem; 2021; 296():100184. PubMed ID: 33310704
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrostatic versus nonelectrostatic effects in DNA sequence discrimination by divalent ions Mg2+ and Mn2+.
    Solt I; Simon I; Császár AG; Fuxreiter M
    J Phys Chem B; 2007 Jun; 111(22):6272-9. PubMed ID: 17497910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes.
    Genna V; Colombo M; De Vivo M; Marcia M
    Structure; 2018 Jan; 26(1):40-50.e2. PubMed ID: 29225080
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Capture of a third Mg²⁺ is essential for catalyzing DNA synthesis.
    Gao Y; Yang W
    Science; 2016 Jun; 352(6291):1334-7. PubMed ID: 27284197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Catalytic roles of divalent metal ions in phosphoryl transfer by EcoRV endonuclease.
    Sam MD; Perona JJ
    Biochemistry; 1999 May; 38(20):6576-86. PubMed ID: 10350476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of the Y432S Cancer-Associated Variant on the Reaction Mechanism of Human DNA Polymerase κ.
    Maghsoud Y; Roy A; Leddin EM; Cisneros GA
    J Chem Inf Model; 2024 May; 64(10):4231-4249. PubMed ID: 38717969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Catalytic mechanism of DNA backbone cleavage by the restriction enzyme EcoRV: a quantum mechanical/molecular mechanical analysis.
    Imhof P; Fischer S; Smith JC
    Biochemistry; 2009 Sep; 48(38):9061-75. PubMed ID: 19678693
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Histone Deacetylase 8: Characterization of Physiological Divalent Metal Catalysis.
    Nechay MR; Gallup NM; Morgenstern A; Smith QA; Eberhart ME; Alexandrova AN
    J Phys Chem B; 2016 Jul; 120(26):5884-95. PubMed ID: 26996235
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Critical role of magnesium ions in DNA polymerase beta's closing and active site assembly.
    Yang L; Arora K; Beard WA; Wilson SH; Schlick T
    J Am Chem Soc; 2004 Jul; 126(27):8441-53. PubMed ID: 15238001
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight into the phosphodiesterase mechanism from combined QM/MM free energy simulations.
    Wong KY; Gao J
    FEBS J; 2011 Jul; 278(14):2579-95. PubMed ID: 21595828
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic metal ions and enzymatic processing of DNA and RNA.
    Palermo G; Cavalli A; Klein ML; Alfonso-Prieto M; Dal Peraro M; De Vivo M
    Acc Chem Res; 2015 Feb; 48(2):220-8. PubMed ID: 25590654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The structural basis for pyrophosphatase catalysis.
    Heikinheimo P; Lehtonen J; Baykov A; Lahti R; Cooperman BS; Goldman A
    Structure; 1996 Dec; 4(12):1491-508. PubMed ID: 8994974
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Price to be paid for two-metal catalysis: magnesium ions that accelerate chemistry unavoidably limit product release from a protein kinase.
    Jacobsen DM; Bao ZQ; O'Brien P; Brooks CL; Young MA
    J Am Chem Soc; 2012 Sep; 134(37):15357-70. PubMed ID: 22891849
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Modeling the transition state of enzyme-catalyzed phosphoryl transfer reaction using QM/MM method].
    Re S; Sugita Y
    Yakugaku Zasshi; 2011; 131(8):1171-82. PubMed ID: 21804320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.