BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 29932363)

  • 21. Multisource Transfer Double DQN Based on Actor Learning.
    Pan J; Wang X; Cheng Y; Yu Q; Jie Pan ; Xuesong Wang ; Yuhu Cheng ; Qiang Yu ; Yu Q; Cheng Y; Pan J; Wang X
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2227-2238. PubMed ID: 29771674
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-organizing neural networks integrating domain knowledge and reinforcement learning.
    Teng TH; Tan AH; Zurada JM
    IEEE Trans Neural Netw Learn Syst; 2015 May; 26(5):889-902. PubMed ID: 25881365
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Playing Atari with few neurons: Improving the efficacy of reinforcement learning by decoupling feature extraction and decision making.
    Cuccu G; Togelius J; Cudré-Mauroux P
    Auton Agent Multi Agent Syst; 2021; 35(2):17. PubMed ID: 34720684
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural Control of a Tracking Task via Attention-Gated Reinforcement Learning for Brain-Machine Interfaces.
    Wang Y; Wang F; Xu K; Zhang Q; Zhang S; Zheng X
    IEEE Trans Neural Syst Rehabil Eng; 2015 May; 23(3):458-67. PubMed ID: 25073173
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neural modularity helps organisms evolve to learn new skills without forgetting old skills.
    Ellefsen KO; Mouret JB; Clune J
    PLoS Comput Biol; 2015 Apr; 11(4):e1004128. PubMed ID: 25837826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Self-control with spiking and non-spiking neural networks playing games.
    Christodoulou C; Banfield G; Cleanthous A
    J Physiol Paris; 2010; 104(3-4):108-17. PubMed ID: 19944157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Within- and across-trial dynamics of human EEG reveal cooperative interplay between reinforcement learning and working memory.
    Collins AGE; Frank MJ
    Proc Natl Acad Sci U S A; 2018 Mar; 115(10):2502-2507. PubMed ID: 29463751
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deep reinforcement learning and its applications in medical imaging and radiation therapy: a survey.
    Xu L; Zhu S; Wen N
    Phys Med Biol; 2022 Nov; 67(22):. PubMed ID: 36270582
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Learning to Predict Consequences as a Method of Knowledge Transfer in Reinforcement Learning.
    Chalmers E; Contreras EB; Robertson B; Luczak A; Gruber A
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2259-2270. PubMed ID: 28436902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of cooperation facilitated by reinforcement learning with adaptive aspiration levels.
    Tanabe S; Masuda N
    J Theor Biol; 2012 Jan; 293():151-60. PubMed ID: 22037063
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Full left ventricle quantification via deep multitask relationships learning.
    Xue W; Brahm G; Pandey S; Leung S; Li S
    Med Image Anal; 2018 Jan; 43():54-65. PubMed ID: 28987903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Toward nonlinear local reinforcement learning rules through neuroevolution.
    Vassiliades V; Christodoulou C
    Neural Comput; 2013 Nov; 25(11):3020-43. PubMed ID: 24001343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Clipping in neurocontrol by adaptive dynamic programming.
    Fairbank M; Prokhorov D; Alonso E
    IEEE Trans Neural Netw Learn Syst; 2014 Oct; 25(10):1909-20. PubMed ID: 25291742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Action-Driven Visual Object Tracking With Deep Reinforcement Learning.
    Yun S; Choi J; Yoo Y; Yun K; Choi JY
    IEEE Trans Neural Netw Learn Syst; 2018 Jun; 29(6):2239-2252. PubMed ID: 29771675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Is Deep Reinforcement Learning Ready for Practical Applications in Healthcare? A Sensitivity Analysis of Duel-DDQN for Hemodynamic Management in Sepsis Patients.
    Lu M; Shahn Z; Sow D; Doshi-Velez F; Lehman LH
    AMIA Annu Symp Proc; 2020; 2020():773-782. PubMed ID: 33936452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melioration Learning in Two-Person Games.
    Zschache J
    PLoS One; 2016; 11(11):e0166708. PubMed ID: 27851815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical analysis of a reinforcement learning model with the dynamic aspiration level in the iterated Prisoner's dilemma.
    Masuda N; Nakamura M
    J Theor Biol; 2011 Jun; 278(1):55-62. PubMed ID: 21397610
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Integrating temporal difference methods and self-organizing neural networks for reinforcement learning with delayed evaluative feedback.
    Tan AH; Lu N; Xiao D
    IEEE Trans Neural Netw; 2008 Feb; 19(2):230-44. PubMed ID: 18269955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning.
    Elfwing S; Uchibe E; Doya K
    Neural Netw; 2018 Nov; 107():3-11. PubMed ID: 29395652
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Modulation for emergent networks: serotonin and dopamine.
    Weng J; Paslaski S; Daly J; VanDam C; Brown J
    Neural Netw; 2013 May; 41():225-39. PubMed ID: 23294763
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.