These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 29932653)

  • 1. Rotating Catalysts Are Superior: Suppressing Product Inhibition by Anchimeric Assistance in Four-Component Catalytic Machinery.
    Biswas PK; Saha S; Paululat T; Schmittel M
    J Am Chem Soc; 2018 Jul; 140(29):9038-9041. PubMed ID: 29932653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Rotator Design on the Speed of Self-Assembled Four-Component Nanorotors: Coordinative Versus Dispersive Interactions.
    Biswas PK; Saha S; Nanaji Y; Rana A; Schmittel M
    Inorg Chem; 2017 Jun; 56(11):6662-6670. PubMed ID: 28513168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational Slippage Determines Rotational Frequency in Five-Component Nanorotors.
    Samanta SK; Rana A; Schmittel M
    Angew Chem Int Ed Engl; 2016 Feb; 55(6):2267-72. PubMed ID: 26836349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching Dual Catalysis without Molecular Switch: Using A Multicomponent Information System for Reversible Reconfiguration of Catalytic Machinery.
    Goswami A; Paululat T; Schmittel M
    J Am Chem Soc; 2019 Oct; 141(39):15656-15663. PubMed ID: 31536350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evolution of catalytic machinery: three-component nanorotor catalyzes formation of four-component catalytic machinery.
    Goswami A; Özer MS; Paul I; Schmittel M
    Chem Commun (Camb); 2021 Jul; 57(58):7180-7183. PubMed ID: 34190276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic Three-Component Machinery: Control of Catalytic Activity by Machine Speed.
    Paul I; Goswami A; Mittal N; Schmittel M
    Angew Chem Int Ed Engl; 2018 Jan; 57(1):354-358. PubMed ID: 29166556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Allosteric regulation of rotational, optical and catalytic properties within multicomponent machinery.
    Saha S; Ghosh A; Paululat T; Schmittel M
    Dalton Trans; 2020 Jun; 49(25):8693-8700. PubMed ID: 32555898
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of chemically propelled catalytic nanorotors.
    Chen Y; Shi Y
    J Chem Phys; 2013 Aug; 139(6):064707. PubMed ID: 23947880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-component nanorotors generated from fusion of complexes and post-fusion metal-metal exchange.
    Goswami A; Paul I; Schmittel M
    Chem Commun (Camb); 2017 May; 53(37):5186-5189. PubMed ID: 28439584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development plus kinetic and mechanistic studies of a prototype supported-nanoparticle heterogeneous catalyst formation system in contact with solution: Ir(1,5-COD)Cl/gamma-Al2O3 and its reduction by H2 to Ir(0)n/gamma-Al2O3.
    Mondloch JE; Wang Q; Frenkel AI; Finke RG
    J Am Chem Soc; 2010 Jul; 132(28):9701-14. PubMed ID: 20575521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cu(i) coordination polymers (CPs) as tandem catalysts for three-component sequential click/alkynylation cycloaddition reaction with regiocontrol.
    Guo X; Huang C; Yang H; Shao Z; Gao K; Qin N; Li G; Wu J; Hou H
    Dalton Trans; 2018 Dec; 47(47):16895-16901. PubMed ID: 30444255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Four-component supramolecular nanorotors.
    Samanta SK; Schmittel M
    J Am Chem Soc; 2013 Dec; 135(50):18794-7. PubMed ID: 24299448
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing catalysts for functionalization of unactivated C-H bonds based on the CH activation reaction.
    Hashiguchi BG; Bischof SM; Konnick MM; Periana RA
    Acc Chem Res; 2012 Jun; 45(6):885-98. PubMed ID: 22482496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenalenyl-based organozinc catalysts for intramolecular hydroamination reactions: a combined catalytic, kinetic, and mechanistic investigation of the catalytic cycle.
    Mukherjee A; Sen TK; Ghorai PK; Samuel PP; Schulzke C; Mandal SK
    Chemistry; 2012 Aug; 18(34):10530-45. PubMed ID: 22807308
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic asymmetric aziridination with borate catalysts derived from VANOL and VAPOL ligands: scope and mechanistic studies.
    Zhang Y; Desai A; Lu Z; Hu G; Ding Z; Wulff WD
    Chemistry; 2008; 14(12):3785-803. PubMed ID: 18306265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surfactant-encapsulated polyoxometalates as immobilized supramolecular catalysts for highly efficient and selective oxidation reactions.
    Qi W; Wang Y; Li W; Wu L
    Chemistry; 2010 Jan; 16(3):1068-78. PubMed ID: 19908268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfaces in Heterogeneous Catalysts: Advancing Mechanistic Understanding through Atomic-Scale Measurements.
    Gao W; Hood ZD; Chi M
    Acc Chem Res; 2017 Apr; 50(4):787-795. PubMed ID: 28207240
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative Dehydrogenation on Nanocarbon: Insights into the Reaction Mechanism and Kinetics via in Situ Experimental Methods.
    Qi W; Yan P; Su DS
    Acc Chem Res; 2018 Mar; 51(3):640-648. PubMed ID: 29446621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous catalysts supported on soluble polymers: biphasic Suzuki-Miyaura coupling of aryl chlorides using phase-tagged palladium-phosphine catalysts.
    an der Heiden M; Plenio H
    Chemistry; 2004 Apr; 10(7):1789-97. PubMed ID: 15054766
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hybrid intelligent multi-fault detection method for rotating machinery based on RSGWPT, KPCA and Twin SVM.
    Liu Z; Guo W; Hu J; Ma W
    ISA Trans; 2017 Jan; 66():249-261. PubMed ID: 27837907
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.