These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 29932665)
21. Efficient Plasmon-Mediated Energy Funneling to the Surface of Au@Pt Core-Shell Nanocrystals. Engelbrekt C; Crampton KT; Fishman DA; Law M; Apkarian VA ACS Nano; 2020 Apr; 14(4):5061-5074. PubMed ID: 32167744 [TBL] [Abstract][Full Text] [Related]
22. Multiplasmon modes for enhancing the photocatalytic activity of Au/Ag/Cu Hu Z; Mi Y; Ji Y; Wang R; Zhou W; Qiu X; Liu X; Fang Z; Wu X Nanoscale; 2019 Sep; 11(35):16445-16454. PubMed ID: 31441922 [TBL] [Abstract][Full Text] [Related]
23. A Schottky-Barrier-Free Plasmonic Semiconductor Photocatalyst for Nitrogen Fixation in a "One-Stone-Two-Birds" Manner. Bai H; Lam SH; Yang J; Cheng X; Li S; Jiang R; Shao L; Wang J Adv Mater; 2022 Jan; 34(2):e2104226. PubMed ID: 34655458 [TBL] [Abstract][Full Text] [Related]
24. Enhanced Light-Driven Charge Separation and H Guo X; Li Q; Liu Y; Jin T; Chen Y; Guo L; Lian T ACS Appl Mater Interfaces; 2020 Oct; 12(40):44769-44776. PubMed ID: 32914948 [TBL] [Abstract][Full Text] [Related]
25. Quantifying Wavelength-Dependent Plasmonic Hot Carrier Energy Distributions at Metal/Semiconductor Interfaces. Yu Y; Wijesekara KD; Xi X; Willets KA ACS Nano; 2019 Mar; 13(3):3629-3637. PubMed ID: 30807695 [TBL] [Abstract][Full Text] [Related]
26. In situ decoration of plasmonic Au nanoparticles on graphene quantum dots-graphitic carbon nitride hybrid and evaluation of its visible light photocatalytic performance. Rajender G; Choudhury B; Giri PK Nanotechnology; 2017 Sep; 28(39):395703. PubMed ID: 28726671 [TBL] [Abstract][Full Text] [Related]
27. Hot carriers in action: multimodal photocatalysis on Au@SnO Fu X; Li GG; Villarreal E; Wang H Nanoscale; 2019 Apr; 11(15):7324-7334. PubMed ID: 30938391 [TBL] [Abstract][Full Text] [Related]
28. Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. Yu H; Shi R; Zhao Y; Waterhouse GI; Wu LZ; Tung CH; Zhang T Adv Mater; 2016 Nov; 28(43):9454-9477. PubMed ID: 27623955 [TBL] [Abstract][Full Text] [Related]
29. Hot-electron transfer from the semiconductor domain to the metal domain in CdSe@CdS{Au} nano-heterostructures. Dana J; Maity P; Ghosh HN Nanoscale; 2017 Jul; 9(27):9723-9731. PubMed ID: 28675235 [TBL] [Abstract][Full Text] [Related]
30. Recent advances and mechanism of plasmonic metal-semiconductor photocatalysis. Kong T; Liao A; Xu Y; Qiao X; Zhang H; Zhang L; Zhang C RSC Adv; 2024 May; 14(24):17041-17050. PubMed ID: 38808242 [TBL] [Abstract][Full Text] [Related]
31. Engineering Reaction Kinetics by Tailoring the Metal Tips of Metal-Semiconductor Nanodumbbells. Choi JY; Jeong D; Lee SJ; Kang DG; Kim SK; Nam KM; Song H Nano Lett; 2017 Sep; 17(9):5688-5694. PubMed ID: 28850244 [TBL] [Abstract][Full Text] [Related]
32. Water splitting on composite plasmonic-metal/semiconductor photoelectrodes: evidence for selective plasmon-induced formation of charge carriers near the semiconductor surface. Ingram DB; Linic S J Am Chem Soc; 2011 Apr; 133(14):5202-5. PubMed ID: 21425795 [TBL] [Abstract][Full Text] [Related]
33. A Nonmetal Plasmonic Z-Scheme Photocatalyst with UV- to NIR-Driven Photocatalytic Protons Reduction. Zhang Z; Huang J; Fang Y; Zhang M; Liu K; Dong B Adv Mater; 2017 May; 29(18):. PubMed ID: 28262995 [TBL] [Abstract][Full Text] [Related]
34. Synergetic metal-semiconductor interaction: Single-atomic Pt decorated CdS nano-photocatalyst for highly water-to-hydrogen conversion. Hao XL; Chu XS; Liu XY; Li W J Colloid Interface Sci; 2022 Sep; 621():160-168. PubMed ID: 35461131 [TBL] [Abstract][Full Text] [Related]
35. Understanding the roles of plasmonic Au nanocrystal size, shape, aspect ratio and loading amount in Au/g-C Guo Y; Jia H; Yang J; Yin H; Yang Z; Wang J; Yang B Phys Chem Chem Phys; 2018 Aug; 20(34):22296-22307. PubMed ID: 30124712 [TBL] [Abstract][Full Text] [Related]
36. Transfer Charge and Energy of Ag@CdSe QDs-rGO Core-Shell Plasmonic Photocatalyst for Enhanced Visible Light Photocatalytic Activity. Zhou M; Li J; Ye Z; Ma C; Wang H; Huo P; Shi W; Yan Y ACS Appl Mater Interfaces; 2015 Dec; 7(51):28231-43. PubMed ID: 26669327 [TBL] [Abstract][Full Text] [Related]
37. Near unity quantum yield of light-driven redox mediator reduction and efficient H2 generation using colloidal nanorod heterostructures. Zhu H; Song N; Lv H; Hill CL; Lian T J Am Chem Soc; 2012 Jul; 134(28):11701-8. PubMed ID: 22721499 [TBL] [Abstract][Full Text] [Related]
38. Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. Wu LZ; Chen B; Li ZJ; Tung CH Acc Chem Res; 2014 Jul; 47(7):2177-85. PubMed ID: 24873498 [TBL] [Abstract][Full Text] [Related]
39. Integration of Plasmonic Effects and Schottky Junctions into Metal-Organic Framework Composites: Steering Charge Flow for Enhanced Visible-Light Photocatalysis. Xiao JD; Han L; Luo J; Yu SH; Jiang HL Angew Chem Int Ed Engl; 2018 Jan; 57(4):1103-1107. PubMed ID: 29215207 [TBL] [Abstract][Full Text] [Related]
40. Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Li S; Miao P; Zhang Y; Wu J; Zhang B; Du Y; Han X; Sun J; Xu P Adv Mater; 2021 Feb; 33(6):e2000086. PubMed ID: 32201994 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]