BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29932990)

  • 1. The intracellular domain of the leptin receptor prevents mitochondrial depolarization and mitophagy.
    Wauman J; Tavernier J
    Biochim Biophys Acta Mol Cell Res; 2018 Sep; 1865(9):1312-1325. PubMed ID: 29932990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nix is critical to two distinct phases of mitophagy, reactive oxygen species-mediated autophagy induction and Parkin-ubiquitin-p62-mediated mitochondrial priming.
    Ding WX; Ni HM; Li M; Liao Y; Chen X; Stolz DB; Dorn GW; Yin XM
    J Biol Chem; 2010 Sep; 285(36):27879-90. PubMed ID: 20573959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PGAM5 regulates PINK1/Parkin-mediated mitophagy via DRP1 in CCCP-induced mitochondrial dysfunction.
    Park YS; Choi SE; Koh HC
    Toxicol Lett; 2018 Mar; 284():120-128. PubMed ID: 29241732
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria.
    Xiao B; Deng X; Lim GGY; Xie S; Zhou ZD; Lim KL; Tan EK
    Cell Death Dis; 2017 Oct; 8(10):e3097. PubMed ID: 29022898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of glucose metabolism and ATP in maintaining PINK1 levels during Parkin-mediated mitochondrial damage responses.
    Lee S; Zhang C; Liu X
    J Biol Chem; 2015 Jan; 290(2):904-17. PubMed ID: 25404737
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.
    Fu M; St-Pierre P; Shankar J; Wang PT; Joshi B; Nabi IR
    Mol Biol Cell; 2013 Apr; 24(8):1153-62. PubMed ID: 23427266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTENα regulates mitophagy and maintains mitochondrial quality control.
    Li G; Yang J; Yang C; Zhu M; Jin Y; McNutt MA; Yin Y
    Autophagy; 2018; 14(10):1742-1760. PubMed ID: 29969932
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peroxiredoxin 6 Is a Crucial Factor in the Initial Step of Mitochondrial Clearance and Is Upstream of the PINK1-Parkin Pathway.
    Ma S; Zhang X; Zheng L; Li Z; Zhao X; Lai W; Shen H; Lv J; Yang G; Wang Q; Ji J
    Antioxid Redox Signal; 2016 Mar; 24(9):486-501. PubMed ID: 26560306
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bcl-xL inhibits PINK1/Parkin-dependent mitophagy by preventing mitochondrial Parkin accumulation.
    Yu S; Du M; Yin A; Mai Z; Wang Y; Zhao M; Wang X; Chen T
    Int J Biochem Cell Biol; 2020 May; 122():105720. PubMed ID: 32088314
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Parkin and mitofusins reciprocally regulate mitophagy and mitochondrial spheroid formation.
    Ding WX; Guo F; Ni HM; Bockus A; Manley S; Stolz DB; Eskelinen EL; Jaeschke H; Yin XM
    J Biol Chem; 2012 Dec; 287(50):42379-88. PubMed ID: 23095748
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal integration of mitochondrial stress signals by the PINK1:Parkin pathway.
    Bowling JL; Skolfield MC; Riley WA; Nolin AP; Wolf LC; Nelson DE
    BMC Mol Cell Biol; 2019 Aug; 20(1):33. PubMed ID: 31412778
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The protonophore CCCP interferes with lysosomal degradation of autophagic cargo in yeast and mammalian cells.
    Padman BS; Bach M; Lucarelli G; Prescott M; Ramm G
    Autophagy; 2013 Nov; 9(11):1862-75. PubMed ID: 24150213
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bcl-2-associated athanogene 5 (BAG5) regulates Parkin-dependent mitophagy and cell death.
    De Snoo ML; Friesen EL; Zhang YT; Earnshaw R; Dorval G; Kapadia M; O'Hara DM; Agapova V; Chau H; Pellerito O; Tang MY; Wang X; Schmitt-Ulms G; Durcan TM; Fon EA; Kalia LV; Kalia SK
    Cell Death Dis; 2019 Dec; 10(12):907. PubMed ID: 31787745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioenergetics of neurons inhibit the translocation response of Parkin following rapid mitochondrial depolarization.
    Van Laar VS; Arnold B; Cassady SJ; Chu CT; Burton EA; Berman SB
    Hum Mol Genet; 2011 Mar; 20(5):927-40. PubMed ID: 21147754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PHB2 (prohibitin 2) promotes PINK1-PRKN/Parkin-dependent mitophagy by the PARL-PGAM5-PINK1 axis.
    Yan C; Gong L; Chen L; Xu M; Abou-Hamdan H; Tang M; Désaubry L; Song Z
    Autophagy; 2020 Mar; 16(3):419-434. PubMed ID: 31177901
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy.
    Fedorowicz MA; de Vries-Schneider RL; Rüb C; Becker D; Huang Y; Zhou C; Alessi Wolken DM; Voos W; Liu Y; Przedborski S
    EMBO Rep; 2014 Jan; 15(1):86-93. PubMed ID: 24357652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy.
    Park S; Choi SG; Yoo SM; Son JH; Jung YK
    Autophagy; 2014; 10(11):1906-20. PubMed ID: 25483962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective escape of proteins from the mitochondria during mitophagy.
    Saita S; Shirane M; Nakayama KI
    Nat Commun; 2013; 4():1410. PubMed ID: 23361001
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nix restores mitophagy and mitochondrial function to protect against PINK1/Parkin-related Parkinson's disease.
    Koentjoro B; Park JS; Sue CM
    Sci Rep; 2017 Mar; 7():44373. PubMed ID: 28281653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positive regulation of human PINK1 and Parkin gene expression by nuclear respiratory factor 1.
    Lu Y; Ding W; Wang B; Wang L; Kan H; Wang X; Wang D; Zhu L
    Mitochondrion; 2020 Mar; 51():22-29. PubMed ID: 31862413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.