These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 29933022)
1. Blood-brainbarrier disruption dictates nanoparticle accumulation following experimental brain injury. Bharadwaj VN; Rowe RK; Harrison J; Wu C; Anderson TR; Lifshitz J; Adelson PD; Kodibagkar VD; Stabenfeldt SE Nanomedicine; 2018 Oct; 14(7):2155-2166. PubMed ID: 29933022 [TBL] [Abstract][Full Text] [Related]
2. Temporal assessment of nanoparticle accumulation after experimental brain injury: Effect of particle size. Bharadwaj VN; Lifshitz J; Adelson PD; Kodibagkar VD; Stabenfeldt SE Sci Rep; 2016 Jul; 6():29988. PubMed ID: 27444615 [TBL] [Abstract][Full Text] [Related]
3. Sex-Dependent Macromolecule and Nanoparticle Delivery in Experimental Brain Injury. Bharadwaj VN; Copeland C; Mathew E; Newbern J; Anderson TR; Lifshitz J; Kodibagkar VD; Stabenfeldt SE Tissue Eng Part A; 2020 Jul; 26(13-14):688-701. PubMed ID: 32697674 [TBL] [Abstract][Full Text] [Related]
4. Traumatic brain injury opens blood-brain barrier to stealth liposomes via an enhanced permeability and retention (EPR)-like effect. Boyd BJ; Galle A; Daglas M; Rosenfeld JV; Medcalf R J Drug Target; 2015; 23(9):847-53. PubMed ID: 26079716 [TBL] [Abstract][Full Text] [Related]
5. Brain-derived neurotrophic factor delivered to the brain using poly (lactide-co-glycolide) nanoparticles improves neurological and cognitive outcome in mice with traumatic brain injury. Khalin I; Alyautdin R; Wong TW; Gnanou J; Kocherga G; Kreuter J Drug Deliv; 2016 Nov; 23(9):3520-3528. PubMed ID: 27278330 [TBL] [Abstract][Full Text] [Related]
6. Comparison between midline and lateral fluid percussion injury in mice reveals prolonged but divergent cortical neuroinflammation. Witcher KG; Dziabis JE; Bray CE; Gordillo AJ; Kumar JE; Eiferman DS; Godbout JP; Kokiko-Cochran ON Brain Res; 2020 Nov; 1746():146987. PubMed ID: 32592739 [TBL] [Abstract][Full Text] [Related]
7. Evaluating differential nanoparticle accumulation and retention kinetics in a mouse model of traumatic brain injury via K Miller HA; Magsam AW; Tarudji AW; Romanova S; Weber L; Gee CC; Madsen GL; Bronich TK; Kievit FM Sci Rep; 2019 Nov; 9(1):16099. PubMed ID: 31695100 [TBL] [Abstract][Full Text] [Related]
8. Midline (central) fluid percussion model of traumatic brain injury in pediatric and adolescent rats. Rowe RK; Harrison JL; Ellis TW; Adelson PD; Lifshitz J J Neurosurg Pediatr; 2018 Jul; 22(1):22-30. PubMed ID: 29676680 [TBL] [Abstract][Full Text] [Related]
9. Negative correlation of CD34+ cells with blood-brain barrier permeability following traumatic brain injury in a rat model. Jin X; Wang F; Liu X; Liang B; Chen Z; He J; Zhang H; Zhang J Microcirculation; 2014 Nov; 21(8):696-702. PubMed ID: 24894113 [TBL] [Abstract][Full Text] [Related]
10. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Lifshitz J; Rowe RK; Griffiths DR; Evilsizor MN; Thomas TC; Adelson PD; McIntosh TK Brain Inj; 2016; 30(11):1293-1301. PubMed ID: 27712117 [TBL] [Abstract][Full Text] [Related]
11. Normobaric hyperoxia treatment prevents early alteration in dopamine level in mice striatum after fluid percussion injury: a biochemical approach. Muthuraju S; Islam MR; Pati S; Jaafar H; Abdullah JM; Yusoff KM Int J Neurosci; 2015; 125(9):686-92. PubMed ID: 25180987 [TBL] [Abstract][Full Text] [Related]
12. Modified Mouse Model of Repetitive Mild Traumatic Brain Injury Incorporating Thinned-Skull Window and Fluid Percussion. Liu Y; Mao H; Chen S; Wang J; Ouyang W J Vis Exp; 2024 Apr; (206):. PubMed ID: 38709029 [TBL] [Abstract][Full Text] [Related]
13. Early ghrelin treatment attenuates disruption of the blood brain barrier and apoptosis after traumatic brain injury through a UCP-2 mechanism. Lopez NE; Gaston L; Lopez KR; Coimbra RC; Hageny A; Putnam J; Eliceiri B; Coimbra R; Bansal V Brain Res; 2012 Dec; 1489():140-8. PubMed ID: 23099053 [TBL] [Abstract][Full Text] [Related]
14. Resolvins AT-D1 and E1 differentially impact functional outcome, post-traumatic sleep, and microglial activation following diffuse brain injury in the mouse. Harrison JL; Rowe RK; Ellis TW; Yee NS; O'Hara BF; Adelson PD; Lifshitz J Brain Behav Immun; 2015 Jul; 47():131-40. PubMed ID: 25585137 [TBL] [Abstract][Full Text] [Related]
15. SIRT2 inhibition exacerbates neuroinflammation and blood-brain barrier disruption in experimental traumatic brain injury by enhancing NF-κB p65 acetylation and activation. Yuan F; Xu ZM; Lu LY; Nie H; Ding J; Ying WH; Tian HL J Neurochem; 2016 Feb; 136(3):581-93. PubMed ID: 26546505 [TBL] [Abstract][Full Text] [Related]
16. Delayed Administration of BQ788, an ET Michinaga S; Kimura A; Hatanaka S; Minami S; Asano A; Ikushima Y; Matsui S; Toriyama Y; Fujii M; Koyama Y J Neurotrauma; 2018 Jul; 35(13):1481-1494. PubMed ID: 29316834 [TBL] [Abstract][Full Text] [Related]
18. Breakdown of the blood-brain barrier after fluid percussion brain injury in the rat: Part 2: Effect of hypoxia on permeability to plasma proteins. Tanno H; Nockels RP; Pitts LH; Noble LJ J Neurotrauma; 1992; 9(4):335-47. PubMed ID: 1291693 [TBL] [Abstract][Full Text] [Related]