These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 29933191)

  • 1. Correlations between hydrochar properties and chemical constitution of orange peel waste during hydrothermal carbonization.
    Xiao K; Liu H; Li Y; Yi L; Zhang X; Hu H; Yao H
    Bioresour Technol; 2018 Oct; 265():432-436. PubMed ID: 29933191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uncatalyzed and acid-aided microwave hydrothermal carbonization of orange peel waste.
    Lei Q; Kannan S; Raghavan V
    Waste Manag; 2021 May; 126():106-118. PubMed ID: 33743337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Deepak KR; Mohan S; Dinesha P; Balasubramanian R
    J Environ Manage; 2023 Sep; 342():118350. PubMed ID: 37302173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrothermal carbonization of municipal waste streams.
    Berge ND; Ro KS; Mao J; Flora JR; Chappell MA; Bae S
    Environ Sci Technol; 2011 Jul; 45(13):5696-703. PubMed ID: 21671644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlations between the physicochemical properties of hydrochar and specific components of waste lettuce: Influence of moisture, carbohydrates, proteins and lipids.
    Li Y; Liu H; Xiao K; Liu X; Hu H; Li X; Yao H
    Bioresour Technol; 2019 Jan; 272():482-488. PubMed ID: 30390541
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen.
    Leng L; Yang L; Leng S; Zhang W; Zhou Y; Peng H; Li H; Hu Y; Jiang S; Li H
    Sci Total Environ; 2021 Feb; 756():143679. PubMed ID: 33307499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrothermal carbonization of waste from leather processing and feasibility of produced hydrochar as an alternative solid fuel.
    Lee J; Hong J; Jang D; Park KY
    J Environ Manage; 2019 Oct; 247():115-120. PubMed ID: 31234046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upgradation of chemical, fuel, thermal, and structural properties of rice husk through microwave-assisted hydrothermal carbonization.
    Nizamuddin S; Siddiqui MTH; Baloch HA; Mubarak NM; Griffin G; Madapusi S; Tanksale A
    Environ Sci Pollut Res Int; 2018 Jun; 25(18):17529-17539. PubMed ID: 29663294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterized hydrochar of algal biomass for producing solid fuel through hydrothermal carbonization.
    Park KY; Lee K; Kim D
    Bioresour Technol; 2018 Jun; 258():119-124. PubMed ID: 29524686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of functional groups and environmentally persistent free radicals in hydrothermal carbonisation of lignin.
    Ruan X; Liu Y; Wang G; Frost RL; Qian G; Tsang DCW
    Bioresour Technol; 2018 Dec; 270():223-229. PubMed ID: 30219573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuel properties and combustion kinetics of hydrochar prepared by hydrothermal carbonization of bamboo.
    Yang W; Wang H; Zhang M; Zhu J; Zhou J; Wu S
    Bioresour Technol; 2016 Apr; 205():199-204. PubMed ID: 26826960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrothermal carbonization of yard waste for solid bio-fuel production: Study on combustion kinetic, energy properties, grindability and flowability of hydrochar.
    Sharma HB; Panigrahi S; Dubey BK
    Waste Manag; 2019 May; 91():108-119. PubMed ID: 31203932
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of spent liquor recirculation in hydrothermal carbonization.
    Kabadayi Catalkopru A; Kantarli IC; Yanik J
    Bioresour Technol; 2017 Feb; 226():89-93. PubMed ID: 28006737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-hydrothermal carbonization of swine manure and cellulose: Influence of mutual interaction of intermediates on properties of the products.
    Li Q; Lin H; Zhang S; Yuan X; Gholizadeh M; Wang Y; Xiang J; Hu S; Hu X
    Sci Total Environ; 2021 Oct; 791():148134. PubMed ID: 34118669
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrolysis of hydrochar from digestate: Effect of hydrothermal carbonization and pyrolysis temperatures on pyrochar formation.
    Garlapalli RK; Wirth B; Reza MT
    Bioresour Technol; 2016 Nov; 220():168-174. PubMed ID: 27567477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conversion of municipal solid waste via hydrothermal carbonization: comparison of carbonization products to products from current waste management techniques.
    Lu X; Jordan B; Berge ND
    Waste Manag; 2012 Jul; 32(7):1353-65. PubMed ID: 22516099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization.
    Zhang X; Zhang L; Li A
    J Environ Manage; 2017 Oct; 201():52-62. PubMed ID: 28645066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unveiling drastic influence of cross-interactions in hydrothermal carbonization of spirulina with cellulose, lignin or poplar on nature of hydrochar and activated carbon.
    Inkoua S; Li C; Rashid M; Naeem MM; Zhang S; Gao W; Gholizadeh M; Hu X
    J Environ Manage; 2024 Aug; 366():121713. PubMed ID: 38986368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrochar production from watermelon peel by hydrothermal carbonization.
    Chen X; Lin Q; He R; Zhao X; Li G
    Bioresour Technol; 2017 Oct; 241():236-243. PubMed ID: 28570889
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carbonization temperature and feedstock type interactively affect chemical, fuel, and surface properties of hydrochars.
    Nzediegwu C; Naeth MA; Chang SX
    Bioresour Technol; 2021 Jun; 330():124976. PubMed ID: 33743274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.