BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 29933885)

  • 1. Relative Biological Effectiveness Uncertainties and Implications for Beam Arrangements and Dose Constraints in Proton Therapy.
    Paganetti H; Giantsoudi D
    Semin Radiat Oncol; 2018 Jun; 28(3):256-263. PubMed ID: 29933885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inclusion of a variable RBE into proton and photon plan comparison for various fractionation schedules in prostate radiation therapy.
    Ödén J; Eriksson K; Toma-Dasu I
    Med Phys; 2017 Mar; 44(3):810-822. PubMed ID: 28107554
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial correlation of linear energy transfer and relative biological effectiveness with suspected treatment-related toxicities following proton therapy for intracranial tumors.
    Ödén J; Toma-Dasu I; Witt Nyström P; Traneus E; Dasu A
    Med Phys; 2020 Feb; 47(2):342-351. PubMed ID: 31705671
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relating the proton relative biological effectiveness to tumor control and normal tissue complication probabilities assuming interpatient variability in α/β.
    Paganetti H
    Acta Oncol; 2017 Nov; 56(11):1379-1386. PubMed ID: 28918679
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Considerations for shoot-through FLASH proton therapy.
    Verhaegen F; Wanders RG; Wolfs C; Eekers D
    Phys Med Biol; 2021 Mar; 66(6):06NT01. PubMed ID: 33571981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of range uncertainty on clinical distributions of linear energy transfer and biological effectiveness in proton therapy.
    Hahn C; Eulitz J; Peters N; Wohlfahrt P; Enghardt W; Richter C; Lühr A
    Med Phys; 2020 Dec; 47(12):6151-6162. PubMed ID: 33118161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Proton Treatment Techniques for Posterior Fossa Tumors: Consequences for Linear Energy Transfer and Dose-Volume Parameters for the Brainstem and Organs at Risk.
    Giantsoudi D; Adams J; MacDonald SM; Paganetti H
    Int J Radiat Oncol Biol Phys; 2017 Feb; 97(2):401-410. PubMed ID: 27986346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploration and application of phenomenological RBE models for proton therapy.
    Rørvik E; Fjæra LF; Dahle TJ; Dale JE; Engeseth GM; Stokkevåg CH; Thörnqvist S; Ytre-Hauge KS
    Phys Med Biol; 2018 Sep; 63(18):185013. PubMed ID: 30102240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interlaced proton grid therapy - Linear energy transfer and relative biological effectiveness distributions.
    Henry T; Ödén J
    Phys Med; 2018 Dec; 56():81-89. PubMed ID: 30473384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of the uncertainties of a biological model and their impact on variable RBE proton treatment plan optimization.
    Resch AF; Landry G; Kamp F; Cabal G; Belka C; Wilkens JJ; Parodi K; Dedes G
    Phys Med; 2017 Apr; 36():91-102. PubMed ID: 28410691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of respiratory motion on variable relative biological effectiveness in 4D-dose distributions of proton therapy.
    Ulrich S; Wieser HP; Cao W; Mohan R; Bangert M
    Acta Oncol; 2017 Nov; 56(11):1420-1427. PubMed ID: 28828913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proton relative biological effectiveness (RBE): a multiscale problem.
    Underwood TS; McMahon SJ
    Br J Radiol; 2019 Jan; 92(1093):20180004. PubMed ID: 29975153
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of radiobiological effects in intensity modulated proton therapy.
    Wilkens JJ; Oelfke U
    Med Phys; 2005 Feb; 32(2):455-65. PubMed ID: 15789592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physical and biological factors determining the effective proton range.
    Grün R; Friedrich T; Krämer M; Zink K; Durante M; Engenhart-Cabillic R; Scholz M
    Med Phys; 2013 Nov; 40(11):111716. PubMed ID: 24320424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. LET-weighted doses effectively reduce biological variability in proton radiotherapy planning.
    McMahon SJ; Paganetti H; Prise KM
    Phys Med Biol; 2018 Nov; 63(22):225009. PubMed ID: 30412471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust Proton Treatment Planning: Physical and Biological Optimization.
    Unkelbach J; Paganetti H
    Semin Radiat Oncol; 2018 Apr; 28(2):88-96. PubMed ID: 29735195
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can particle beam therapy be improved using helium ions? - a planning study focusing on pediatric patients.
    Knäusl B; Fuchs H; Dieckmann K; Georg D
    Acta Oncol; 2016 Jun; 55(6):751-9. PubMed ID: 26750803
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance and implementation of RBE variations in proton beam therapy.
    Paganetti H
    Technol Cancer Res Treat; 2003 Oct; 2(5):413-26. PubMed ID: 14529306
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogel rectum-prostate spacers mitigate the uncertainties in proton relative biological effectiveness associated with anterior-oblique beams.
    Underwood TS; Voog JC; Moteabbed M; Tang S; Soffen E; Cahlon O; Lu HM; Zietman AL; Efstathiou JA; Paganetti H
    Acta Oncol; 2017 Apr; 56(4):575-581. PubMed ID: 28075206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Variance-based sensitivity analysis for uncertainties in proton therapy: A framework to assess the effect of simultaneous uncertainties in range, positioning, and RBE model predictions on RBE-weighted dose distributions.
    Hofmaier J; Dedes G; Carlson DJ; Parodi K; Belka C; Kamp F
    Med Phys; 2021 Feb; 48(2):805-818. PubMed ID: 33210739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.