These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 29934181)
1. Natural diversity of hydroxycinnamic acid derivatives, flavonoid glycosides, carotenoids and chlorophylls in leaves of six different amaranth species. Schröter D; Baldermann S; Schreiner M; Witzel K; Maul R; Rohn S; Neugart S Food Chem; 2018 Nov; 267():376-386. PubMed ID: 29934181 [TBL] [Abstract][Full Text] [Related]
2. Indigenous leafy vegetables of Eastern Africa - A source of extraordinary secondary plant metabolites. Neugart S; Baldermann S; Ngwene B; Wesonga J; Schreiner M Food Res Int; 2017 Oct; 100(Pt 3):411-422. PubMed ID: 28964364 [TBL] [Abstract][Full Text] [Related]
3. Polyphenol and flavonoid profiles and radical scavenging activity in leafy vegetable Amaranthus gangeticus. Sarker U; Oba S BMC Plant Biol; 2020 Nov; 20(1):499. PubMed ID: 33138787 [TBL] [Abstract][Full Text] [Related]
4. Combined mass spectrometric and chromatographic methods for in-depth analysis of phenolic secondary metabolites in barley leaves. Piasecka A; Sawikowska A; Krajewski P; Kachlicki P J Mass Spectrom; 2015 Mar; 50(3):513-32. PubMed ID: 25800187 [TBL] [Abstract][Full Text] [Related]
5. Variation of polyphenols and betaines in aerial parts of young, field-grown Amaranthus genotypes. Steffensen SK; Pedersen HA; Labouriau R; Mortensen AG; Laursen B; de Troiani RM; Noellemeyer EJ; Janovska D; Stavelikova H; Taberner A; Christophersen C; Fomsgaard IS J Agric Food Chem; 2011 Nov; 59(22):12073-82. PubMed ID: 22007946 [TBL] [Abstract][Full Text] [Related]
6. Effects of Developmental Stages and Reduced UVB and Low UV Conditions on Plant Secondary Metabolite Profiles in Pak Choi (Brassica rapa subsp. chinensis). Heinze M; Hanschen FS; Wiesner-Reinhold M; Baldermann S; Gräfe J; Schreiner M; Neugart S J Agric Food Chem; 2018 Feb; 66(7):1678-1692. PubMed ID: 29397716 [TBL] [Abstract][Full Text] [Related]
7. Lipids, tocopherols, and carotenoids in leaves of amaranth and quinoa cultivars and a new approach to overall evaluation of nutritional quality traits. Tang Y; Li X; Chen PX; Zhang B; Hernandez M; Zhang H; Marcone MF; Liu R; Tsao R J Agric Food Chem; 2014 Dec; 62(52):12610-9. PubMed ID: 25465272 [TBL] [Abstract][Full Text] [Related]
8. Drought stress enhances nutritional and bioactive compounds, phenolic acids and antioxidant capacity of Amaranthus leafy vegetable. Sarker U; Oba S BMC Plant Biol; 2018 Oct; 18(1):258. PubMed ID: 30367616 [TBL] [Abstract][Full Text] [Related]
9. Antioxidant constituents of three selected red and green color Amaranthus leafy vegetable. Sarker U; Oba S Sci Rep; 2019 Dec; 9(1):18233. PubMed ID: 31796754 [TBL] [Abstract][Full Text] [Related]
10. RNA-sequencing analysis reveals betalains metabolism in the leaf of Amaranthus tricolor L. Liu S; Zheng X; Pan J; Peng L; Cheng C; Wang X; Zhao C; Zhang Z; Lin Y; XuHan X; Lai Z PLoS One; 2019; 14(4):e0216001. PubMed ID: 31022263 [TBL] [Abstract][Full Text] [Related]
11. Brassica-enriched wheat bread: Unraveling the impact of ontogeny and breadmaking on bioactive secondary plant metabolites of pak choi and kale. Klopsch R; Baldermann S; Hanschen FS; Voss A; Rohn S; Schreiner M; Neugart S Food Chem; 2019 Oct; 295():412-422. PubMed ID: 31174776 [TBL] [Abstract][Full Text] [Related]
12. Phenolic compounds of mountain tea from the Balkans: LC/DAD/ESI/MSn profile and content. Petreska J; Stefkov G; Kulevanova S; Alipieva K; Bankova V; Stefova M Nat Prod Commun; 2011 Jan; 6(1):21-30. PubMed ID: 21366039 [TBL] [Abstract][Full Text] [Related]
13. Salinity stress enhances color parameters, bioactive leaf pigments, vitamins, polyphenols, flavonoids and antioxidant activity in selected Amaranthus leafy vegetables. Sarker U; Oba S J Sci Food Agric; 2019 Mar; 99(5):2275-2284. PubMed ID: 30324618 [TBL] [Abstract][Full Text] [Related]
14. Assessing the Fatty Acid, Carotenoid, and Tocopherol Compositions of Amaranth and Quinoa Seeds Grown in Ontario and Their Overall Contribution to Nutritional Quality. Tang Y; Li X; Chen PX; Zhang B; Liu R; Hernandez M; Draves J; Marcone MF; Tsao R J Agric Food Chem; 2016 Feb; 64(5):1103-10. PubMed ID: 26760897 [TBL] [Abstract][Full Text] [Related]
15. Non-destructive evaluation of chlorophyll content in quinoa and amaranth leaves by simple and multiple regression analysis of RGB image components. Riccardi M; Mele G; Pulvento C; Lavini A; d'Andria R; Jacobsen SE Photosynth Res; 2014 Jun; 120(3):263-72. PubMed ID: 24442792 [TBL] [Abstract][Full Text] [Related]
16. Chlorogenic acid versus amaranth's caffeoylisocitric acid - Gut microbial degradation of caffeic acid derivatives. Vollmer M; Schröter D; Esders S; Neugart S; Farquharson FM; Duncan SH; Schreiner M; Louis P; Maul R; Rohn S Food Res Int; 2017 Oct; 100(Pt 3):375-384. PubMed ID: 28964360 [TBL] [Abstract][Full Text] [Related]
17. Synthesis and quantitation of six phenolic amides in Amaranthus spp. Pedersen HA; Steffensen SK; Christophersen C; Mortensen AG; Jørgensen LN; Niveyro S; de Troiani RM; Rodríguez-Enríquez RJ; Barba-de la Rosa AP; Fomsgaard IS J Agric Food Chem; 2010 May; 58(10):6306-11. PubMed ID: 20438062 [TBL] [Abstract][Full Text] [Related]
18. Augmentation of leaf color parameters, pigments, vitamins, phenolic acids, flavonoids and antioxidant activity in selected Amaranthus tricolor under salinity stress. Sarker U; Oba S Sci Rep; 2018 Aug; 8(1):12349. PubMed ID: 30120319 [TBL] [Abstract][Full Text] [Related]
19. Biotechnological advances in amaranths species and their future outlook in crop improvement--a review. Pandey RM Recent Pat DNA Gene Seq; 2013 Dec; 7(3):179-86. PubMed ID: 23521706 [TBL] [Abstract][Full Text] [Related]
20. Determination of hydroxycinnamic acids present in Rhododendron species. Shrestha A; Hakeem Said I; Grimbs A; Thielen N; Lansing L; Schepker H; Kuhnert N Phytochemistry; 2017 Dec; 144():216-225. PubMed ID: 28982060 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]