BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 29934352)

  • 1. Challenges to Body Fluid Homeostasis Differentially Recruit Phasic Dopamine Signaling in a Taste-Selective Manner.
    Fortin SM; Roitman MF
    J Neurosci; 2018 Aug; 38(31):6841-6853. PubMed ID: 29934352
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential Dopamine Release Dynamics in the Nucleus Accumbens Core and Shell Reveal Complementary Signals for Error Prediction and Incentive Motivation.
    Saddoris MP; Cacciapaglia F; Wightman RM; Carelli RM
    J Neurosci; 2015 Aug; 35(33):11572-82. PubMed ID: 26290234
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physiological state tunes mesolimbic signaling: Lessons from sodium appetite and inspiration from Randall R. Sakai.
    Fortin SM; Roitman MF
    Physiol Behav; 2017 Sep; 178():21-27. PubMed ID: 27876640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ghrelin regulates phasic dopamine and nucleus accumbens signaling evoked by food-predictive stimuli.
    Cone JJ; Roitman JD; Roitman MF
    J Neurochem; 2015 Jun; 133(6):844-56. PubMed ID: 25708523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleus Accumbens Subnuclei Regulate Motivated Behavior via Direct Inhibition and Disinhibition of VTA Dopamine Subpopulations.
    Yang H; de Jong JW; Tak Y; Peck J; Bateup HS; Lammel S
    Neuron; 2018 Jan; 97(2):434-449.e4. PubMed ID: 29307710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parallels and Overlap: The Integration of Homeostatic Signals by Mesolimbic Dopamine Neurons.
    Hsu TM; McCutcheon JE; Roitman MF
    Front Psychiatry; 2018; 9():410. PubMed ID: 30233430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thirst recruits phasic dopamine signaling through subfornical organ neurons.
    Hsu TM; Bazzino P; Hurh SJ; Konanur VR; Roitman JD; Roitman MF
    Proc Natl Acad Sci U S A; 2020 Dec; 117(48):30744-30754. PubMed ID: 33199591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping brain Fos immunoreactivity in response to water deprivation and partial rehydration: Influence of sodium intake.
    Dalmasso C; Antunes-Rodrigues J; Vivas L; De Luca LA
    Physiol Behav; 2015 Nov; 151():494-501. PubMed ID: 26297688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ghrelin acts as an interface between physiological state and phasic dopamine signaling.
    Cone JJ; McCutcheon JE; Roitman MF
    J Neurosci; 2014 Apr; 34(14):4905-13. PubMed ID: 24695709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments.
    Bassareo V; Di Chiara G
    Neuroscience; 1999 Mar; 89(3):637-41. PubMed ID: 10199600
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nucleus accumbens shell, but not core, tracks motivational value of salt.
    Loriaux AL; Roitman JD; Roitman MF
    J Neurophysiol; 2011 Sep; 106(3):1537-44. PubMed ID: 21697439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetically-induced tonic dopamine release from VTA-nucleus accumbens projections inhibits reward consummatory behaviors.
    Mikhailova MA; Bass CE; Grinevich VP; Chappell AM; Deal AL; Bonin KD; Weiner JL; Gainetdinov RR; Budygin EA
    Neuroscience; 2016 Oct; 333():54-64. PubMed ID: 27421228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Salt appetite in sodium-depleted or sodium-replete conditions: possible role of opioid receptors.
    Lucas LR; Grillo CA; McEwen BS
    Neuroendocrinology; 2007; 85(3):139-47. PubMed ID: 17483578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium homeostasis in chronic decerebrate rats.
    Grill HJ; Schulkin J; Flynn FW
    Behav Neurosci; 1986 Aug; 100(4):536-43. PubMed ID: 3741604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleus accumbens dopamine/glutamate interaction switches modes to generate desire versus dread: D(1) alone for appetitive eating but D(1) and D(2) together for fear.
    Richard JM; Berridge KC
    J Neurosci; 2011 Sep; 31(36):12866-79. PubMed ID: 21900565
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Afferent modulation of dopamine neuron firing differentially regulates tonic and phasic dopamine transmission.
    Floresco SB; West AR; Ash B; Moore H; Grace AA
    Nat Neurosci; 2003 Sep; 6(9):968-73. PubMed ID: 12897785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amphetamine elevates nucleus accumbens dopamine via an action potential-dependent mechanism that is modulated by endocannabinoids.
    Covey DP; Bunner KD; Schuweiler DR; Cheer JF; Garris PA
    Eur J Neurosci; 2016 Jun; 43(12):1661-73. PubMed ID: 27038339
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats.
    Anstrom KK; Miczek KA; Budygin EA
    Neuroscience; 2009 Jun; 161(1):3-12. PubMed ID: 19298844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ventral Tegmental Area Dopamine Cell Activation during Male Rat Sexual Behavior Regulates Neuroplasticity and d-Amphetamine Cross-Sensitization following Sex Abstinence.
    Beloate LN; Omrani A; Adan RA; Webb IC; Coolen LM
    J Neurosci; 2016 Sep; 36(38):9949-61. PubMed ID: 27656032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phasic Dopamine Transmission Reflects Initiation Vigor and Exerted Effort in an Action- and Region-Specific Manner.
    Ko D; Wanat MJ
    J Neurosci; 2016 Feb; 36(7):2202-11. PubMed ID: 26888930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.