BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

492 related articles for article (PubMed ID: 29934814)

  • 1. Transcriptome analysis for identifying possible gene regulations during maize root emergence and formation at the initial growth stage.
    Hwang SG; Kim KH; Lee BM; Moon JC
    Genes Genomics; 2018 Jul; 40(7):755-766. PubMed ID: 29934814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative RNA-Seq Analysis Reveals That Regulatory Network of Maize Root Development Controls the Expression of Genes in Response to N Stress.
    He X; Ma H; Zhao X; Nie S; Li Y; Zhang Z; Shen Y; Chen Q; Lu Y; Lan H; Zhou S; Gao S; Pan G; Lin H
    PLoS One; 2016; 11(3):e0151697. PubMed ID: 26990640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-syntenic genes drive RTCS-dependent regulation of the embryo transcriptome during formation of seminal root primordia in maize (Zea mays L.).
    Tai H; Opitz N; Lithio A; Lu X; Nettleton D; Hochholdinger F
    J Exp Bot; 2017 Jan; 68(3):403-414. PubMed ID: 28204533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying key regulatory genes of maize root growth and development by RNA sequencing.
    Zhang C; Li X; Wang Z; Zhang Z; Wu Z
    Genomics; 2020 Nov; 112(6):5157-5169. PubMed ID: 32961281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key Maize Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome and Physiological Analyses of Contrasting Inbred Lines.
    Zenda T; Liu S; Wang X; Liu G; Jin H; Dong A; Yang Y; Duan H
    Int J Mol Sci; 2019 Mar; 20(6):. PubMed ID: 30871211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome Profiling of Maize (
    Waititu JK; Cai Q; Sun Y; Sun Y; Li C; Zhang C; Liu J; Wang H
    Genes (Basel); 2021 Oct; 12(10):. PubMed ID: 34681032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of LRL5 as a key regulator of root hair growth in maize.
    Wang CX; Qi CY; Luo JH; Liu L; He Y; Chen LQ
    Plant J; 2019 Apr; 98(1):71-82. PubMed ID: 30556198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development dynamics of the maize root transcriptome responsive to heavy metal Pb pollution.
    Gao J; Zhang Y; Lu C; Peng H; Luo M; Li G; Shen Y; Ding H; Zhang Z; Pan G; Lin H
    Biochem Biophys Res Commun; 2015 Mar; 458(2):287-93. PubMed ID: 25645016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Analysis of Protein Abundance, Transcript Level, and Tissue Diversity To Reveal Developmental Regulation of Maize.
    Jia H; Sun W; Li M; Zhang Z
    J Proteome Res; 2018 Feb; 17(2):822-833. PubMed ID: 29250956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexity and specificity of the maize (Zea mays L.) root hair transcriptome.
    Hey S; Baldauf J; Opitz N; Lithio A; Pasha A; Provart N; Nettleton D; Hochholdinger F
    J Exp Bot; 2017 Apr; 68(9):2175-2185. PubMed ID: 28398587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water-deficit-induced changes in transcription factor expression in maize seedlings.
    Seeve CM; Cho IJ; Hearne LB; Srivastava GP; Joshi T; Smith DO; Sharp RE; Oliver MJ
    Plant Cell Environ; 2017 May; 40(5):686-701. PubMed ID: 28039925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamic transcriptome of waxy maize (Zea mays L. sinensis Kulesh) during seed development.
    Gu W; Yu D; Guan Y; Wang H; Qin T; Sun P; Hu Y; Wei J; Zheng H
    Genes Genomics; 2020 Sep; 42(9):997-1010. PubMed ID: 32676852
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-resolution profile of transcriptomes reveals a role of alternative splicing for modulating response to nitrogen in maize.
    Wang Y; Xu J; Ge M; Ning L; Hu M; Zhao H
    BMC Genomics; 2020 May; 21(1):353. PubMed ID: 32393171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore
    Pan Y; Zhao SW; Tang XL; Wang S; Wang X; Zhang XX; Zhou JJ; Xi JH
    Genome; 2020 Jan; 63(1):1-12. PubMed ID: 31533014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic transcriptome analysis unravels key regulatory genes of maize root growth and development in response to potassium deficiency.
    Guo S; Liu Z; Sheng H; Olukayode T; Zhou Z; Liu Y; Wang M; He M; Kochian L; Qin Y
    Planta; 2023 Oct; 258(5):99. PubMed ID: 37837470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Root herbivory: molecular analysis of the maize transcriptome upon infestation by Southern corn rootworm, Diabrotica undecimpunctata howardi.
    Lawrence SD; Novak NG; Kayal WE; Ju CJ; Cooke JE
    Physiol Plant; 2012 Apr; 144(4):303-19. PubMed ID: 22172013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development.
    Xiong W; Wang C; Zhang X; Yang Q; Shao R; Lai J; Du C
    Plant J; 2017 Dec; 92(6):1143-1156. PubMed ID: 29072883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Expanded Maize Gene Expression Atlas based on RNA Sequencing and its Use to Explore Root Development.
    Stelpflug SC; Sekhon RS; Vaillancourt B; Hirsch CN; Buell CR; de Leon N; Kaeppler SM
    Plant Genome; 2016 Mar; 9(1):. PubMed ID: 27898762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression profile analysis of maize in response to Setosphaeria turcica.
    Shi F; Zhang Y; Wang K; Meng Q; Liu X; Ma L; Li Y; Liu J; Ma L
    Gene; 2018 Jun; 659():100-108. PubMed ID: 29548860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of 'Xinlimei' radish candidate genes associated with anthocyanin biosynthesis based on a transcriptome analysis.
    Sun Y; Wang J; Qiu Y; Liu T; Song J; Li X
    Gene; 2018 May; 657():81-91. PubMed ID: 29518548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.