These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
495 related articles for article (PubMed ID: 29934848)
1. Training-Induced Changes in Mitochondrial Content and Respiratory Function in Human Skeletal Muscle. Granata C; Jamnick NA; Bishop DJ Sports Med; 2018 Aug; 48(8):1809-1828. PubMed ID: 29934848 [TBL] [Abstract][Full Text] [Related]
2. Improvements in exercise performance with high-intensity interval training coincide with an increase in skeletal muscle mitochondrial content and function. Jacobs RA; Flück D; Bonne TC; Bürgi S; Christensen PM; Toigo M; Lundby C J Appl Physiol (1985); 2013 Sep; 115(6):785-93. PubMed ID: 23788574 [TBL] [Abstract][Full Text] [Related]
3. Adaptations of skeletal muscle mitochondria to exercise training. Lundby C; Jacobs RA Exp Physiol; 2016 Jan; 101(1):17-22. PubMed ID: 26440213 [TBL] [Abstract][Full Text] [Related]
4. High-intensity exercise training enhances mitochondrial oxidative phosphorylation efficiency in a temperature-dependent manner in human skeletal muscle: implications for exercise performance. Fiorenza M; Lemminger AK; Marker M; Eibye K; Iaia FM; Bangsbo J; Hostrup M FASEB J; 2019 Aug; 33(8):8976-8989. PubMed ID: 31136218 [TBL] [Abstract][Full Text] [Related]
5. Can we optimise the exercise training prescription to maximise improvements in mitochondria function and content? Bishop DJ; Granata C; Eynon N Biochim Biophys Acta; 2014 Apr; 1840(4):1266-75. PubMed ID: 24128929 [TBL] [Abstract][Full Text] [Related]
6. Similar qualitative and quantitative changes of mitochondrial respiration following strength and endurance training in normoxia and hypoxia in sedentary humans. Pesta D; Hoppel F; Macek C; Messner H; Faulhaber M; Kobel C; Parson W; Burtscher M; Schocke M; Gnaiger E Am J Physiol Regul Integr Comp Physiol; 2011 Oct; 301(4):R1078-87. PubMed ID: 21775647 [TBL] [Abstract][Full Text] [Related]
7. Metabolic stress-dependent regulation of the mitochondrial biogenic molecular response to high-intensity exercise in human skeletal muscle. Fiorenza M; Gunnarsson TP; Hostrup M; Iaia FM; Schena F; Pilegaard H; Bangsbo J J Physiol; 2018 Jul; 596(14):2823-2840. PubMed ID: 29727016 [TBL] [Abstract][Full Text] [Related]
8. Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. Daussin FN; Zoll J; Ponsot E; Dufour SP; Doutreleau S; Lonsdorfer E; Ventura-Clapier R; Mettauer B; Piquard F; Geny B; Richard R J Appl Physiol (1985); 2008 May; 104(5):1436-41. PubMed ID: 18292295 [TBL] [Abstract][Full Text] [Related]
9. Adaptations in Mitochondrial Enzymatic Activity Occurs Independent of Genomic Dosage in Response to Aerobic Exercise Training and Deconditioning in Human Skeletal Muscle. Fritzen AM; Thøgersen FB; Thybo K; Vissing CR; Krag TO; Ruiz-Ruiz C; Risom L; Wibrand F; Høeg LD; Kiens B; Duno M; Vissing J; Jeppesen TD Cells; 2019 Mar; 8(3):. PubMed ID: 30871120 [TBL] [Abstract][Full Text] [Related]
10. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. MacInnis MJ; Zacharewicz E; Martin BJ; Haikalis ME; Skelly LE; Tarnopolsky MA; Murphy RM; Gibala MJ J Physiol; 2017 May; 595(9):2955-2968. PubMed ID: 27396440 [TBL] [Abstract][Full Text] [Related]
11. Preserved response of mitochondrial function to short-term endurance training in skeletal muscle of heart transplant recipients. Zoll J; N'Guessan B; Ribera F; Lampert E; Fortin D; Veksler V; Bigard X; Geny B; Lonsdorfer J; Ventura-Clapier R; Mettauer B J Am Coll Cardiol; 2003 Jul; 42(1):126-32. PubMed ID: 12849672 [TBL] [Abstract][Full Text] [Related]
12. Intermittent and continuous high-intensity exercise training induce similar acute but different chronic muscle adaptations. Cochran AJ; Percival ME; Tricarico S; Little JP; Cermak N; Gillen JB; Tarnopolsky MA; Gibala MJ Exp Physiol; 2014 May; 99(5):782-91. PubMed ID: 24532598 [TBL] [Abstract][Full Text] [Related]
13. Principles of Exercise Prescription, and How They Influence Exercise-Induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis. Granata C; Jamnick NA; Bishop DJ Sports Med; 2018 Jul; 48(7):1541-1559. PubMed ID: 29675670 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial adaptations to high-volume exercise training are rapidly reversed after a reduction in training volume in human skeletal muscle. Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ FASEB J; 2016 Oct; 30(10):3413-3423. PubMed ID: 27402675 [TBL] [Abstract][Full Text] [Related]
15. Training intensity modulates changes in PGC-1α and p53 protein content and mitochondrial respiration, but not markers of mitochondrial content in human skeletal muscle. Granata C; Oliveira RS; Little JP; Renner K; Bishop DJ FASEB J; 2016 Feb; 30(2):959-70. PubMed ID: 26572168 [TBL] [Abstract][Full Text] [Related]
16. Effects of acute and chronic endurance exercise on mitochondrial uncoupling in human skeletal muscle. Fernström M; Tonkonogi M; Sahlin K J Physiol; 2004 Feb; 554(Pt 3):755-63. PubMed ID: 14634202 [TBL] [Abstract][Full Text] [Related]
17. Plasticity of skeletal muscle mitochondria: structure and function. Hoppeler H; Fluck M Med Sci Sports Exerc; 2003 Jan; 35(1):95-104. PubMed ID: 12544642 [TBL] [Abstract][Full Text] [Related]
18. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers. Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498 [TBL] [Abstract][Full Text] [Related]
19. Haematological rather than skeletal muscle adaptations contribute to the increase in peak oxygen uptake induced by moderate endurance training. Montero D; Cathomen A; Jacobs RA; Flück D; de Leur J; Keiser S; Bonne T; Kirk N; Lundby AK; Lundby C J Physiol; 2015 Oct; 593(20):4677-88. PubMed ID: 26282186 [TBL] [Abstract][Full Text] [Related]
20. Mitochondria express enhanced quality as well as quantity in association with aerobic fitness across recreationally active individuals up to elite athletes. Jacobs RA; Lundby C J Appl Physiol (1985); 2013 Feb; 114(3):344-50. PubMed ID: 23221957 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]