These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 29935016)

  • 21. Single-Molecule Blinking Fluorescence Enhancement by Surface Plasmon-Coupled Emission-Based Substrates for Single-Molecule Localization Imaging.
    Chien FC; Lin CY; Abrigo G
    Anal Chem; 2021 Nov; 93(46):15401-15411. PubMed ID: 34730956
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fluorescence Spectroscopy with Metal-Dielectric Waveguides.
    Badugu R; Szmacinski H; Ray K; Descrovi E; Ricciardi S; Zhang D; Chen J; Huo Y; Lakowicz JR
    J Phys Chem C Nanomater Interfaces; 2015 Jul; 119(28):16245-16255. PubMed ID: 26523157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ imaging of micropatterned phospholipid membranes by surface plasmon fluorescence microscopy.
    Tawa K; Morigaki K
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):447-51. PubMed ID: 20728323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Strong Surface Enhanced Florescence of Carbon Dot Labeled Bacteria Cells Observed with High Contrast on Gold Film.
    Bukasov R; Filchakova O; Gudun K; Bouhrara M
    J Fluoresc; 2018 Jan; 28(1):1-4. PubMed ID: 29127572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eliminating unwanted far-field excitation in objective-type TIRF. Part I. identifying sources of nonevanescent excitation light.
    Brunstein M; Teremetz M; Hérault K; Tourain C; Oheim M
    Biophys J; 2014 Mar; 106(5):1020-32. PubMed ID: 24606927
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluorescence enhancement with deep-ultraviolet surface plasmon excitation.
    Ono A; Kikawada M; Akimoto R; Inami W; Kawata Y
    Opt Express; 2013 Jul; 21(15):17447-53. PubMed ID: 23938614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface plasmon coupled fluorescence in the visible to near-infrared spectral regions using thin nickel films: application to whole blood assays.
    Aslan K; Zhang Y; Geddes CD
    Anal Chem; 2009 May; 81(10):3801-8. PubMed ID: 19354285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Radiative decay engineering 8: Coupled emission microscopy for lens-free high-throughput fluorescence detection.
    Zhu L; Badugu R; Zhang D; Wang R; Descrovi E; Lakowicz JR
    Anal Biochem; 2017 Aug; 531():20-36. PubMed ID: 28527910
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fluorescence emission patterns near glass and metal-coated surfaces investigated with back focal plane imaging.
    Mattheyses AL; Axelrod D
    J Biomed Opt; 2005; 10(5):054007. PubMed ID: 16292967
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fluorescence excitation and imaging of single molecules near dielectric-coated and bare surfaces: a theoretical study.
    Axelrod D
    J Microsc; 2012 Aug; 247(2):147-60. PubMed ID: 22612666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visualization of cortex organization and dynamics in microorganisms, using total internal reflection fluorescence microscopy.
    Spira F; Dominguez-Escobar J; Müller N; Wedlich-Söldner R
    J Vis Exp; 2012 May; (63):e3982. PubMed ID: 22588431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal enhancement of surface plasmon-coupled emission (SPCE) with the evanescent field of surface plasmons on a bimetallic paraboloid biochip.
    Yuk JS; MacCraith BD; McDonagh C
    Biosens Bioelectron; 2011 Mar; 26(7):3213-8. PubMed ID: 21256731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experimental and theoretical evaluation of surface plasmon-coupled emission for sensitive fluorescence detection.
    Trnavsky M; Enderlein J; Ruckstuhl T; McDonagh C; MacCraith BD
    J Biomed Opt; 2008; 13(5):054021. PubMed ID: 19021401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Use of surface plasmon-coupled emission to measure DNA hybridization.
    Malicka J; Gryczynski I; Gryczynski Z; Lakowicz JR
    J Biomol Screen; 2004 Apr; 9(3):208-15. PubMed ID: 15140382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Directional surface plasmon-coupled emission: A new method for high sensitivity detection.
    Lakowicz JR; Malicka J; Gryczynski I; Gryczynski Z
    Biochem Biophys Res Commun; 2003 Aug; 307(3):435-9. PubMed ID: 12893239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A theoretical investigation of single-molecule fluorescence detection on thin metallic layers.
    Enderlein J
    Biophys J; 2000 Apr; 78(4):2151-8. PubMed ID: 10733992
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Massive Enhancement of Optical Transmission across a Thin Metal Film via Wave Vector Matching in Grating-Coupled Surface Plasmon Resonance.
    Mahmood R; Johnson MB; Hillier AC
    Anal Chem; 2019 Jul; 91(13):8350-8357. PubMed ID: 31140785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing.
    Wang Y; Wu L; Wong TI; Bauch M; Zhang Q; Zhang J; Liu X; Zhou X; Bai P; Dostalek J; Liedberg B
    Nanoscale; 2016 Apr; 8(15):8008-16. PubMed ID: 27010223
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ultraviolet surface plasmon-coupled emission using thin aluminum films.
    Gryczynski I; Malicka J; Gryczynski Z; Nowaczyk K; Lakowicz JR
    Anal Chem; 2004 Jul; 76(14):4076-81. PubMed ID: 15253645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Around-the-objective total internal reflection fluorescence microscopy.
    Burghardt TP; Hipp AD; Ajtai K
    Appl Opt; 2009 Nov; 48(32):6120-31. PubMed ID: 19904308
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.