These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29935153)

  • 41. A Control Architecture for Grasp Strength Regulation in Myocontrolled Robotic Hands Using Vibrotactile Feedback: Preliminary Results.
    Meattini R; Biagiotti L; Palli G; De Gregorio D; Melchiorri C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1272-1277. PubMed ID: 31374804
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inter-Limb Transfer of Grasp Force Perception With Closed-Loop Hand Prosthesis.
    Fu Q; Shao F; Santello M
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):927-936. PubMed ID: 31021799
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Augmenting sensorimotor control using "goal-aware" vibrotactile stimulation during reaching and manipulation behaviors.
    Tzorakoleftherakis E; Murphey TD; Scheidt RA
    Exp Brain Res; 2016 Aug; 234(8):2403-14. PubMed ID: 27074942
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A third arm - Design of a bypass prosthesis enabling incorporation.
    Wilson AW; Blustein DH; Sensinger JW
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1381-1386. PubMed ID: 28814013
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation.
    Xu H; Zhang D; Huegel JC; Xu W; Zhu X
    IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):827-36. PubMed ID: 26372430
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improving internal model strength and performance of prosthetic hands using augmented feedback.
    Shehata AW; Engels LF; Controzzi M; Cipriani C; Scheme EJ; Sensinger JW
    J Neuroeng Rehabil; 2018 Jul; 15(1):70. PubMed ID: 30064477
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Estimating speed-accuracy trade-offs to evaluate and understand closed-loop prosthesis interfaces.
    Mamidanna P; Dideriksen JL; Dosen S
    J Neural Eng; 2022 Sep; 19(5):. PubMed ID: 35977526
    [No Abstract]   [Full Text] [Related]  

  • 48. Sensory feedback from a prosthetic hand based on air-mediated pressure from the hand to the forearm skin.
    Antfolk C; Björkman A; Frank SO; Sebelius F; Lundborg G; Rosen B
    J Rehabil Med; 2012 Jul; 44(8):702-7. PubMed ID: 22729800
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Extended training improves the accuracy and efficiency of goal-directed reaching guided by supplemental kinesthetic vibrotactile feedback.
    Shah VA; Thomas A; Mrotek LA; Casadio M; Scheidt RA
    Exp Brain Res; 2023 Feb; 241(2):479-493. PubMed ID: 36576510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of age on postural and cognitive task performance while using vibrotactile feedback.
    Lin CC; Whitney SL; Loughlin PJ; Furman JM; Redfern MS; Sienko KH; Sparto PJ
    J Neurophysiol; 2015 Apr; 113(7):2127-36. PubMed ID: 25589585
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Grasping a 2D object: terminal haptic feedback supports an absolute visuo-haptic calibration.
    Hosang S; Chan J; Davarpanah Jazi S; Heath M
    Exp Brain Res; 2016 Apr; 234(4):945-54. PubMed ID: 26680769
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Alpha-band activity in parietofrontal cortex predicts future availability of vibrotactile feedback in prosthesis use.
    Johnson JT; de Mari D; Doherty H; Hammond FL; Wheaton LA
    Exp Brain Res; 2022 May; 240(5):1387-1398. PubMed ID: 35257195
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparison of visual and vibrotactile feedback methods for seated posture guidance.
    Zheng YJ; Morrell JB
    IEEE Trans Haptics; 2013; 6(1):13-23. PubMed ID: 24808264
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Psychophysical principles of discrete event-driven vibrotactile feedback for prostheses.
    Karakuş İ; Güçlü B
    Somatosens Mot Res; 2020 Sep; 37(3):186-203. PubMed ID: 32448043
    [No Abstract]   [Full Text] [Related]  

  • 55. An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback.
    Brown JD; Paek A; Syed M; O'Malley MK; Shewokis PA; Contreras-Vidal JL; Davis AJ; Gillespie RB
    J Neuroeng Rehabil; 2015 Nov; 12():104. PubMed ID: 26602538
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Closed-Loop Multi-Amplitude Control for Robust and Dexterous Performance of Myoelectric Prosthesis.
    Markovic M; Varel M; Schweisfurth MA; Schilling AF; Dosen S
    IEEE Trans Neural Syst Rehabil Eng; 2020 Feb; 28(2):498-507. PubMed ID: 31841418
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Myoelectric prosthesis users and non-disabled individuals wearing a simulated prosthesis exhibit similar compensatory movement strategies.
    Williams HE; Chapman CS; Pilarski PM; Vette AH; Hebert JS
    J Neuroeng Rehabil; 2021 May; 18(1):72. PubMed ID: 33933105
    [TBL] [Abstract][Full Text] [Related]  

  • 58. An Empirical Evaluation of Force Feedback in Body-Powered Prostheses.
    Brown JD; Kunz TS; Gardner D; Shelley MK; Davis AJ; Gillespie RB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):215-226. PubMed ID: 27101614
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative Eye Gaze and Movement Differences in Visuomotor Adaptations to Varying Task Demands Among Upper-Extremity Prosthesis Users.
    Hebert JS; Boser QA; Valevicius AM; Tanikawa H; Lavoie EB; Vette AH; Pilarski PM; Chapman CS
    JAMA Netw Open; 2019 Sep; 2(9):e1911197. PubMed ID: 31517965
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Manual preferences for visually- and haptically-guided grasping.
    Stone KD; Gonzalez CL
    Acta Psychol (Amst); 2015 Sep; 160():1-10. PubMed ID: 26134414
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.