These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 2993545)

  • 21. Patterned vision causes CRE-mediated gene expression in the visual cortex through PKA and ERK.
    Cancedda L; Putignano E; Impey S; Maffei L; Ratto GM; Pizzorusso T
    J Neurosci; 2003 Aug; 23(18):7012-20. PubMed ID: 12904462
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ocular dominance of cortical cells in cats dark-reared into maturity after short postnatal monocular deprivation.
    Yinon U; Goshen S
    Exp Neurol; 1984 Sep; 85(3):461-8. PubMed ID: 6468572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of serotonin 5-HT1 receptors and innervation in the visual cortex of normal and dark-reared cats.
    Mower GD
    J Comp Neurol; 1991 Oct; 312(2):223-30. PubMed ID: 1748729
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Age and dark rearing bidirectionally regulate the level and laminar pattern of expression of Abelson interacting protein 2 (Abi-2): a novel candidate visual cortical plasticity gene.
    Yang CB; Kiser PJ; Zheng YT; Mower GD
    J Mol Neurosci; 2013 Nov; 51(3):647-54. PubMed ID: 23828391
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The development and activity-dependent expression of aggrecan in the cat visual cortex.
    Kind PC; Sengpiel F; Beaver CJ; Crocker-Buque A; Kelly GM; Matthews RT; Mitchell DE
    Cereb Cortex; 2013 Feb; 23(2):349-60. PubMed ID: 22368089
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of dark rearing on the volume of visual cortex (areas 17 and 18) and number of visual cortical cells in young kittens.
    Takács J; Saillour P; Imbert M; Bogner M; Hámori J
    J Neurosci Res; 1992 Jul; 32(3):449-59. PubMed ID: 1433391
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Identification of α-chimaerin as a candidate gene for critical period neuronal plasticity in cat and mouse visual cortex.
    Yang CB; Zheng YT; Kiser PJ; Mower GD
    BMC Neurosci; 2011 Jul; 12():70. PubMed ID: 21767388
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Identification of Munc13-3 as a candidate gene for critical-period neuroplasticity in visual cortex.
    Yang CB; Zheng YT; Li GY; Mower GD
    J Neurosci; 2002 Oct; 22(19):8614-8. PubMed ID: 12351735
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Physiological segregation of geniculo-cortical afferents in the visual cortex of dark-reared cats.
    Swindale NV; Cynader MS
    Brain Res; 1986 Jan; 362(2):281-6. PubMed ID: 3942877
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brief Novel Visual Experience Fundamentally Changes Synaptic Plasticity in the Mouse Visual Cortex.
    Li S; Wang L; Tie X; Sohya K; Lin X; Kirkwood A; Jiang B
    J Neurosci; 2017 Sep; 37(39):9353-9360. PubMed ID: 28821676
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyclic AMP has no effect on the generation, recovery, or background adaptation of light responses in functionally intact rod outer segments: with implications about the function of phosducin.
    Jindrova H; Detwiler PB
    Vis Neurosci; 2000; 17(6):887-92. PubMed ID: 11193104
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fos expression during the critical period in visual cortex: differences between normal and dark reared cats.
    Mower GD; Kaplan IV
    Brain Res Mol Brain Res; 1999 Feb; 64(2):264-9. PubMed ID: 9931501
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Experience-dependent regulation of NMDA receptor subunit composition and phosphorylation in the retina and visual cortex.
    Giannakopoulos M; Kouvelas ED; Mitsacos A
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):1817-22. PubMed ID: 19850826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulation of protein phosphorylation and motility of sperm by cyclic adenosine monophosphate and calcium.
    Tash JS; Means AR
    Biol Reprod; 1982 May; 26(4):745-63. PubMed ID: 6282354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuromodulator-mediated phosphorylation of specific proteins in a neurotumor hybrid cell line (NCB-20).
    Berry-Kravis E; Kazmierczak BI; Derechin V; Dawson G
    J Neurochem; 1988 Apr; 50(4):1287-96. PubMed ID: 2450174
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Immediate early gene expression in the visual cortex of normal and dark reared cats: differences between fos and egr-1.
    Mower GD; Kaplan IV
    Brain Res Mol Brain Res; 2002 Sep; 105(1-2):157-60. PubMed ID: 12399119
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visual deprivation does not affect the orientation and direction sensitivity of relay cells in the lateral geniculate nucleus of the cat.
    Zhou Y; Leventhal AG; Thompson KG
    J Neurosci; 1995 Jan; 15(1 Pt 2):689-98. PubMed ID: 7823172
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phosphorylation of endogenous proteins by adenosine 3':5'-monophosphate-dependent protein kinase in mouse neuroblastoma cells.
    Prashad N; Evetts C; Wischmeyer B
    J Neurochem; 1980 Jul; 35(1):38-46. PubMed ID: 6256479
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Plasticity in the kitten's visual cortex: effects of the suppression of visual experience upon the orientational properties of visual cortical cells.
    Buisseret P; Gary-Bobo E; Imbert M
    Brain Res; 1982 Aug; 256(4):417-26. PubMed ID: 7127149
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of binocular suture and dark rearing on the induction of c-fos protein in the rat visual cortex during and after the critical period.
    Sato MT; Tokunaga A; Kawai Y; Shimomura Y; Tano Y; Senba E
    Neurosci Res; 2000 Mar; 36(3):227-33. PubMed ID: 10683526
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.