These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 29935454)

  • 41. Characteristics of rice husk gasification in an entrained flow reactor.
    Zhao Y; Sun S; Tian H; Qian J; Su F; Ling F
    Bioresour Technol; 2009 Dec; 100(23):6040-4. PubMed ID: 19589673
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Energy potential from rice husk through direct combustion and fast pyrolysis: A review.
    Quispe I; Navia R; Kahhat R
    Waste Manag; 2017 Jan; 59():200-210. PubMed ID: 27751683
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Torrefaction and carbonization of refuse derived fuel: Char characterization and evaluation of gaseous and liquid emissions.
    Nobre C; Alves O; Longo A; Vilarinho C; Gonçalves M
    Bioresour Technol; 2019 Aug; 285():121325. PubMed ID: 30991186
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses.
    Amer M; Nour M; Ahmed M; Ookawara S; Nada S; Elwardany A
    Bioresour Technol; 2019 Aug; 286():121400. PubMed ID: 31078983
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of torrefaction on structure and fast pyrolysis behavior of corncobs.
    Zheng A; Zhao Z; Chang S; Huang Z; Wang X; He F; Li H
    Bioresour Technol; 2013 Jan; 128():370-7. PubMed ID: 23201517
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Implications of biomass pretreatment to cost and carbon emissions: case study of rice straw and Pennisetum in Taiwan.
    Chiueh PT; Lee KC; Syu FS; Lo SL
    Bioresour Technol; 2012 Mar; 108():285-94. PubMed ID: 22281146
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.
    Usui Y; Sakai H; Tokida T; Nakamura H; Nakagawa H; Hasegawa T
    Glob Chang Biol; 2016 Mar; 22(3):1256-70. PubMed ID: 26463894
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effect of mixing ratio of food waste and rice husk co-digestion and substrate to inoculum ratio on biogas production.
    Haider MR; Zeshan ; Yousaf S; Malik RN; Visvanathan C
    Bioresour Technol; 2015 Aug; 190():451-7. PubMed ID: 25818922
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Operational characteristics of a 1.2-MW biomass gasification and power generation plant.
    Wu CZ; Yin XL; Ma LL; Zhou ZQ; Chen HP
    Biotechnol Adv; 2009; 27(5):588-92. PubMed ID: 19397988
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Soil Incorporation of Silica-Rich Rice Husk Decreases Inorganic Arsenic in Rice Grain.
    Seyfferth AL; Morris AH; Gill R; Kearns KA; Mann JN; Paukett M; Leskanic C
    J Agric Food Chem; 2016 May; 64(19):3760-6. PubMed ID: 27109244
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors.
    Su Y; Zhang S; Liu L; Xu D; Xiong Y
    Bioresour Technol; 2018 Nov; 267():584-590. PubMed ID: 30056368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impact of torrefaction on the grindability and fuel characteristics of forest biomass.
    Phanphanich M; Mani S
    Bioresour Technol; 2011 Jan; 102(2):1246-53. PubMed ID: 20801023
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient.
    Kataki S; Hazarika S; Baruah DC
    Waste Manag; 2017 Jan; 59():102-117. PubMed ID: 27771200
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Municipal solid waste processing and separation employing wet torrefaction for alternative fuel production and aluminum reclamation.
    Mu'min GF; Prawisudha P; Zaini IN; Aziz M; Pasek AD
    Waste Manag; 2017 Sep; 67():106-120. PubMed ID: 28529039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Influence of torrefaction with Mg-based additives on the pyrolysis of cotton stalk.
    Zeng K; Yang Q; Zhang Y; Mei Y; Wang X; Yang H; Shao J; Li J; Chen H
    Bioresour Technol; 2018 Aug; 261():62-69. PubMed ID: 29653335
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Combustions of torrefaction-pretreated bamboo forest residues: Physicochemical properties, evolved gases, and kinetic mechanisms.
    Hu J; Song Y; Liu J; Evrendilek F; Buyukada M; Yan Y; Li L
    Bioresour Technol; 2020 May; 304():122960. PubMed ID: 32062500
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of air oxidative and non-oxidative torrefaction on the chemical properties of corn stalk.
    Wang Q; Sun S; Zhang X; Liu H; Sun B; Guo S
    Bioresour Technol; 2021 Jul; 332():125120. PubMed ID: 33848819
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comparative investigation of rice husk, thermoplastic bituminous coal and their blends in production of value-added gaseous and liquid products during hydropyrolysis/co-hydropyrolysis.
    Zhang J; Zheng N; Wang J
    Bioresour Technol; 2018 Nov; 268():445-453. PubMed ID: 30107358
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Physicochemical properties and combustion behavior of duckweed during wet torrefaction.
    Zhang S; Chen T; Li W; Dong Q; Xiong Y
    Bioresour Technol; 2016 Oct; 218():1157-62. PubMed ID: 27469097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The effects of torrefaction on compositions of bio-oil and syngas from biomass pyrolysis by microwave heating.
    Ren S; Lei H; Wang L; Bu Q; Chen S; Wu J; Julson J; Ruan R
    Bioresour Technol; 2013 May; 135():659-64. PubMed ID: 22840200
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.