These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 29935457)

  • 21. Proton-exchange mechanism of specific Cs+ adsorption via lattice defect sites of Prussian blue filled with coordination and crystallization water molecules.
    Ishizaki M; Akiba S; Ohtani A; Hoshi Y; Ono K; Matsuba M; Togashi T; Kananizuka K; Sakamoto M; Takahashi A; Kawamoto T; Tanaka H; Watanabe M; Arisaka M; Nankawa T; Kurihara M
    Dalton Trans; 2013 Dec; 42(45):16049-55. PubMed ID: 23945598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemically bound Prussian blue in sodium alginate hydrogel for enhanced removal of Cs ions.
    Cho E; Kim J; Park CW; Lee KW; Lee TS
    J Hazard Mater; 2018 Oct; 360():243-249. PubMed ID: 30121354
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cesium ion-exchange resin using sodium dodecylbenzenesulfonate for binding to Prussian blue.
    Cho E; Lee JJ; Lee BS; Lee KW; Yeom B; Lee TS
    Chemosphere; 2020 Apr; 244():125589. PubMed ID: 32050353
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Eco-friendly one-pot synthesis of Prussian blue-embedded magnetic hydrogel beads for the removal of cesium from water.
    Yang HM; Hwang JR; Lee DY; Kim KB; Park CW; Kim HR; Lee KW
    Sci Rep; 2018 Jul; 8(1):11476. PubMed ID: 30065289
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions.
    El-Din AMS; Monir T; Sayed MA
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):25550-25563. PubMed ID: 31267400
    [TBL] [Abstract][Full Text] [Related]  

  • 26. TiO2 nanofibre assisted photocatalytic degradation of reactive blue 19 dye from aqueous solution.
    Rezaee A; Ghaneian MT; Taghavinia N; Aminian MK; Hashemian SJ
    Environ Technol; 2009 Mar; 30(3):233-9. PubMed ID: 19438055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel adsorption and photocatalytic oxidation for removal of gaseous toluene by V-doped TiO2/PU under visible light.
    Pham TD; Lee BK
    J Hazard Mater; 2015 Dec; 300():493-503. PubMed ID: 26247377
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Insight into visible light-driven photocatalytic degradation of diesel oil by doped TiO2-PS floating composites.
    Wang X; Wang W; Wang X; Zhao J; Zhang J; Song J
    Environ Sci Pollut Res Int; 2016 Sep; 23(18):18145-53. PubMed ID: 27259962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [TiO2-Induced Photodegradation of Levofloxacin by Visible Light and Its Mechanism].
    Guo HS; Liu YN; Qiao Q; Wei H; Dong CX; Xue J; Li KB
    Huan Jing Ke Xue; 2015 May; 36(5):1700-6. PubMed ID: 26314119
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prussian blue nanocubes decorated on nitrogen-doped hierarchically porous carbon network for efficient sorption of radioactive cesium.
    Li J; Zan Y; Zhang Z; Dou M; Wang F
    J Hazard Mater; 2020 Mar; 385():121568. PubMed ID: 31761643
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced visible light photocatalytic activity of ZnIn2S4 modified by semiconductors.
    Yang S; Li L; Yuan W; Xia Z
    Dalton Trans; 2015 Apr; 44(14):6374-83. PubMed ID: 25742708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cesium Removal from Human Blood by Poly(ethylene glycol)-Decorated Prussian Blue Magnetic Nanoparticles.
    Qian J; Xu J; Kuang L; Hua D
    Chempluschem; 2017 Jun; 82(6):888-895. PubMed ID: 31961562
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photocatalytic activity of rGO/TiO
    Yu L; Wang L; Sun X; Ye D
    J Environ Sci (China); 2018 Nov; 73():138-146. PubMed ID: 30290862
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous three-dimensional graphene foam/Prussian blue composite for efficient removal of radioactive (137)Cs.
    Jang SC; Haldorai Y; Lee GW; Hwang SK; Han YK; Roh C; Huh YS
    Sci Rep; 2015 Dec; 5():17510. PubMed ID: 26670798
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Photocatalytic performance of electrospun CNT/TiO
    Wongaree M; Chiarakorn S; Chuangchote S; Sagawa T
    Environ Sci Pollut Res Int; 2016 Nov; 23(21):21395-21406. PubMed ID: 27502566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of simultaneous photocatalytic degradation of phenolic compounds and reduction of metal ions with nano-TiO2.
    Vinu R; Madras G
    Environ Sci Technol; 2008 Feb; 42(3):913-9. PubMed ID: 18323122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heterogeneous photocatalytic degradation of sulfamethoxazole in water using a biochar-supported TiO2 photocatalyst.
    Kim JR; Kan E
    J Environ Manage; 2016 Sep; 180():94-101. PubMed ID: 27213862
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SiO
    Wan F; Wang C; Han Y; Kong L; Yan J; Zhang X; Liu Y
    Dalton Trans; 2018 Oct; 47(38):13608-13615. PubMed ID: 30207359
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Removal of bromate ion from water using TiO2 and alumina-loaded TiO2 photocatalysts.
    Noguchi H; Nakajima A; Watanabe T; Hashimoto K
    Water Sci Technol; 2002; 46(11-12):27-31. PubMed ID: 12523728
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fabrication of In2S3 nanoparticle decorated TiO2 nanotube arrays by successive ionic layer adsorption and reaction technique and their photocatalytic application.
    Zhang Z; Tang Y; Liu C; Wan L
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4170-7. PubMed ID: 24738366
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.