BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 29935502)

  • 1. Photoelectron spectroscopy of anthracene and fluoranthene radical anions.
    Kregel SJ; Thurston GK; Garand E
    J Chem Phys; 2018 Jun; 148(23):234306. PubMed ID: 29935502
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground and low-lying excited states of phenoxy, 1-naphthoxy, and 2-naphthoxy radicals via anion photoelectron spectroscopy.
    Kregel SJ; Garand E
    J Chem Phys; 2018 Aug; 149(7):074309. PubMed ID: 30134678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Negative ion photoelectron spectroscopy confirms the prediction that (CO)5 and (CO)6 each has a singlet ground state.
    Bao X; Hrovat DA; Borden WT; Wang XB
    J Am Chem Soc; 2013 Mar; 135(11):4291-8. PubMed ID: 23445075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibronic structure of VO2 probed by slow photoelectron velocity-map imaging spectroscopy.
    Kim JB; Weichman ML; Neumark DM
    J Chem Phys; 2014 Jan; 140(3):034307. PubMed ID: 25669379
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow Photoelectron Velocity-Map Imaging Spectroscopy of the ortho-Hydroxyphenoxide Anion.
    Weichman ML; Kim JB; Neumark DM
    J Phys Chem A; 2015 Jun; 119(23):6140-7. PubMed ID: 25744814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging.
    Weichman ML; DeVine JA; Levine DS; Kim JB; Neumark DM
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1698-705. PubMed ID: 26792521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions.
    Kim JB; Weichman ML; Yacovitch TI; Shih C; Neumark DM
    J Chem Phys; 2013 Sep; 139(10):104301. PubMed ID: 24050338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ground state of (CS)4 is different from that of (CO)4: an experimental test of a computational prediction by negative ion photoelectron spectroscopy.
    Zhang J; Hrovat DA; Sun Z; Bao X; Borden WT; Wang XB
    J Phys Chem A; 2013 Aug; 117(33):7841-6. PubMed ID: 23886029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrationally resolved photoelectron spectroscopy of oligothiophene radical anions.
    Thurston GK; Sagan CR; Garand E
    J Chem Phys; 2019 Oct; 151(16):164301. PubMed ID: 31675877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Resolution Photoelectron Spectroscopy of Cryogenically Cooled NO
    Babin MC; DeVine JA; DeWitt M; Stanton JF; Neumark DM
    J Phys Chem Lett; 2020 Jan; 11(2):395-400. PubMed ID: 31765169
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectron imaging of NCCCN(-): The triplet ground state and the singlet-triplet splitting of dicyanocarbene.
    Goebbert DJ; Pichugin K; Khuseynov D; Wenthold PG; Sanov A
    J Chem Phys; 2010 Jun; 132(22):224301. PubMed ID: 20550391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicted Negative Ion Photoelectron Spectra of 1-, 2-, and 9-Cyanoanthracene Radical Anions and Computed Thermochemical Values of the Three Cyanoanthracene Isomers.
    Workman KT; Usher AJ; Henson DW; White NJ; Gichuhi WK
    J Phys Chem A; 2023 May; 127(18):4063-4076. PubMed ID: 37116201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-lying electronic states of cyclopentadienone.
    Khuseynov D; Stanton JF; Sanov A
    J Phys Chem A; 2014 Aug; 118(34):6965-70. PubMed ID: 25093249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyanocyclopentadiene-Annulated Polycyclic Aromatic Radical Anions: Predicted Negative Ion Photoelectron Spectra and Singlet-Triplet Energies of Cyanoindene and Cyanofluorene Radical Anions.
    Abeysooriya DNKH; White NJ; Workman KT; Dupuy JA; Gichuhi WK
    J Phys Chem A; 2024 Mar; 128(10):1837-1852. PubMed ID: 38437617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards an understanding of the singlet-triplet splittings in conjugated hydrocarbons: azulene investigated by anion photoelectron spectroscopy and theoretical calculations.
    Vosskötter S; Konieczny P; Marian CM; Weinkauf R
    Phys Chem Chem Phys; 2015 Sep; 17(36):23573-81. PubMed ID: 26300113
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O(-) and Fe5O(.).
    Weichman ML; DeVine JA; Neumark DM
    J Chem Phys; 2016 Aug; 145(5):054302. PubMed ID: 27497556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-lying vibronic level structure of the ground state of the methoxy radical: Slow electron velocity-map imaging (SEVI) spectra and Köppel-Domcke-Cederbaum (KDC) vibronic Hamiltonian calculations.
    Weichman ML; Cheng L; Kim JB; Stanton JF; Neumark DM
    J Chem Phys; 2017 Jun; 146(22):224309. PubMed ID: 29166074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoelectron spectroscopy and thermochemistry of o-, m-, and p-methylenephenoxide anions.
    Nelson DJ; Gichuhi WK; Nichols CM; Bierbaum VM; Lineberger WC; Lehman JH
    Phys Chem Chem Phys; 2018 Oct; 20(39):25203-25216. PubMed ID: 30255889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photodetachment spectroscopy and resonant photoelectron imaging of the 2-naphthoxide anion via dipole-bound excited states.
    Qian CH; Zhu GZ; Zhang YR; Wang LS
    J Chem Phys; 2020 Jun; 152(21):214307. PubMed ID: 32505147
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectron spectroscopy of cryogenically cooled NiO
    Babin MC; DeWitt M; Lau JA; Weichman ML; Kim JB; Cheng L; Neumark DM
    Phys Chem Chem Phys; 2022 Jul; 24(29):17496-17503. PubMed ID: 35822608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.