BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 29935976)

  • 1. Residue-specific mobility changes in soluble oligomers of the prion protein define regions involved in aggregation.
    Glaves JP; Ladner-Keay CL; Bjorndahl TC; Wishart DS; Sykes BD
    Biochim Biophys Acta Proteins Proteom; 2018 Sep; 1866(9):982-988. PubMed ID: 29935976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The H187R mutation of the human prion protein induces conversion of recombinant prion protein to the PrP(Sc)-like form.
    Hosszu LL; Tattum MH; Jones S; Trevitt CR; Wells MA; Waltho JP; Collinge J; Jackson GS; Clarke AR
    Biochemistry; 2010 Oct; 49(40):8729-38. PubMed ID: 20718410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible conversion of monomeric human prion protein between native and fibrilogenic conformations.
    Jackson GS; Hosszu LL; Power A; Hill AF; Kenney J; Saibil H; Craven CJ; Waltho JP; Clarke AR; Collinge J
    Science; 1999 Mar; 283(5409):1935-7. PubMed ID: 10082469
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational properties of beta-PrP.
    Hosszu LLP; Trevitt CR; Jones S; Batchelor M; Scott DJ; Jackson GS; Collinge J; Waltho JP; Clarke AR
    J Biol Chem; 2009 Aug; 284(33):21981-21990. PubMed ID: 19369250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Charge neutralization of the central lysine cluster in prion protein (PrP) promotes PrP(Sc)-like folding of recombinant PrP amyloids.
    Groveman BR; Kraus A; Raymond LD; Dolan MA; Anson KJ; Dorward DW; Caughey B
    J Biol Chem; 2015 Jan; 290(2):1119-28. PubMed ID: 25416779
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of the recombinant full-length hamster prion protein PrP(29-231): the N terminus is highly flexible.
    Donne DG; Viles JH; Groth D; Mehlhorn I; James TL; Cohen FE; Prusiner SB; Wright PE; Dyson HJ
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13452-7. PubMed ID: 9391046
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methionine oxidation within the prion protein.
    Bettinger J; Ghaemmaghami S
    Prion; 2020 Dec; 14(1):193-205. PubMed ID: 32744136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure of human prions: from biology to structural models-considerations and pitfalls.
    Acevedo-Morantes CY; Wille H
    Viruses; 2014 Oct; 6(10):3875-92. PubMed ID: 25333467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous conformational change within the prion protein--implications for disease pathogenesis?
    Jackson GS
    Bioessays; 2001 Sep; 23(9):772-4. PubMed ID: 11536289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of anti- and pro-aggregation variants to assess the effects of methionine oxidation in human prion protein.
    Wolschner C; Giese A; Kretzschmar HA; Huber R; Moroder L; Budisa N
    Proc Natl Acad Sci U S A; 2009 May; 106(19):7756-61. PubMed ID: 19416900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. β-hairpin-mediated formation of structurally distinct multimers of neurotoxic prion peptides.
    Gill AC
    PLoS One; 2014; 9(1):e87354. PubMed ID: 24498083
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Positively Charged Cluster in the N-terminal Disordered Region may Affect Prion Protein Misfolding: Cryo-EM Structure of Hamster PrP(23-144) Fibrils.
    Lee CH; Saw JE; Chen EH; Wang CH; Uchihashi T; Chen RP
    J Mol Biol; 2024 Jun; 436(11):168576. PubMed ID: 38641239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Immobilized prion protein undergoes spontaneous rearrangement to a conformation having features in common with the infectious form.
    Leclerc E; Peretz D; Ball H; Sakurai H; Legname G; Serban A; Prusiner SB; Burton DR; Williamson RA
    EMBO J; 2001 Apr; 20(7):1547-54. PubMed ID: 11285219
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn(II) binding causes interdomain changes in the structure and flexibility of the human prion protein.
    Gielnik M; Taube M; Zhukova L; Zhukov I; Wärmländer SKTS; Svedružić Ž; Kwiatek WM; Gräslund A; Kozak M
    Sci Rep; 2021 Nov; 11(1):21703. PubMed ID: 34737343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural features of prions explored by sequence analysis. II. A PrP(Sc) model.
    Mornon JP; Prat K; Dupuis F; Boisset N; Callebaut I
    Cell Mol Life Sci; 2002 Dec; 59(12):2144-54. PubMed ID: 12568340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of soluble and insoluble PrP oligomers in the normal human brain.
    Xiao X; Yuan J; Zou WQ
    J Vis Exp; 2012 Oct; (68):. PubMed ID: 23070047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the early steps in the pH-induced conformational conversion of the prion protein.
    Alonso DO; DeArmond SJ; Cohen FE; Daggett V
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):2985-9. PubMed ID: 11248018
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular dynamics simulation of dimeric and monomeric forms of human prion protein: insight into dynamics and properties.
    Sekijima M; Motono C; Yamasaki S; Kaneko K; Akiyama Y
    Biophys J; 2003 Aug; 85(2):1176-85. PubMed ID: 12885661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural effects of the highly protective V127 polymorphism on human prion protein.
    Hosszu LLP; Conners R; Sangar D; Batchelor M; Sawyer EB; Fisher S; Cliff MJ; Hounslow AM; McAuley K; Leo Brady R; Jackson GS; Bieschke J; Waltho JP; Collinge J
    Commun Biol; 2020 Jul; 3(1):402. PubMed ID: 32728168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiple folding pathways for heterologously expressed human prion protein.
    Jackson GS; Hill AF; Joseph C; Hosszu L; Power A; Waltho JP; Clarke AR; Collinge J
    Biochim Biophys Acta; 1999 Apr; 1431(1):1-13. PubMed ID: 10209273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.