These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 29936083)

  • 21. Differential effects of homologous S4 mutations in human skeletal muscle sodium channels on deactivation gating from open and inactivated states.
    Groome JR; Fujimoto E; George AL; Ruben PC
    J Physiol; 1999 May; 516 ( Pt 3)(Pt 3):687-98. PubMed ID: 10200418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An inner pore residue (Asn406) in the Nav1.5 channel controls slow inactivation and enhances mibefradil block to T-type Ca2+ channel levels.
    McNulty MM; Kyle JW; Lipkind GM; Hanck DA
    Mol Pharmacol; 2006 Nov; 70(5):1514-23. PubMed ID: 16885209
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lidocaine: a foot in the door of the inner vestibule prevents ultra-slow inactivation of a voltage-gated sodium channel.
    Sandtner W; Szendroedi J; Zarrabi T; Zebedin E; Hilber K; Glaaser I; Fozzard HA; Dudley SC; Todt H
    Mol Pharmacol; 2004 Sep; 66(3):648-57. PubMed ID: 15322257
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel.
    Gründer S; Firsov D; Chang SS; Jaeger NF; Gautschi I; Schild L; Lifton RP; Rossier BC
    EMBO J; 1997 Mar; 16(5):899-907. PubMed ID: 9118951
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Slow inactivation does not block the aqueous accessibility to the outer pore of voltage-gated Na channels.
    Struyk AF; Cannon SC
    J Gen Physiol; 2002 Oct; 120(4):509-16. PubMed ID: 12356853
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion permeation through a voltage- sensitive gating pore in brain sodium channels having voltage sensor mutations.
    Sokolov S; Scheuer T; Catterall WA
    Neuron; 2005 Jul; 47(2):183-9. PubMed ID: 16039561
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selectivity filter residues contribute unequally to pore stabilization in voltage-gated sodium channels.
    Hilber K; Sandtner W; Zarrabi T; Zebedin E; Kudlacek O; Fozzard HA; Todt H
    Biochemistry; 2005 Oct; 44(42):13874-82. PubMed ID: 16229476
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A mutation in segment I-S6 alters slow inactivation of sodium channels.
    Wang SY; Wang GK
    Biophys J; 1997 Apr; 72(4):1633-40. PubMed ID: 9083667
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Movement of voltage sensor S4 in domain 4 is tightly coupled to sodium channel fast inactivation and gating charge immobilization.
    Kühn FJ; Greeff NG
    J Gen Physiol; 1999 Aug; 114(2):167-83. PubMed ID: 10435996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tryptophan scanning of D1S6 and D4S6 C-termini in voltage-gated sodium channels.
    Wang SY; Bonner K; Russell C; Wang GK
    Biophys J; 2003 Aug; 85(2):911-20. PubMed ID: 12885638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Slow inactivation does not affect movement of the fast inactivation gate in voltage-gated Na+ channels.
    Vedantham V; Cannon SC
    J Gen Physiol; 1998 Jan; 111(1):83-93. PubMed ID: 9417137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dissection of multiphase inactivation of the bacterial sodium channel Na
    Gamal El-Din TM; Lenaeus MJ; Ramanadane K; Zheng N; Catterall WA
    J Gen Physiol; 2019 Feb; 151(2):174-185. PubMed ID: 30510035
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A C-terminal skeletal muscle sodium channel mutation associated with myotonia disrupts fast inactivation.
    Wu FF; Gordon E; Hoffman EP; Cannon SC
    J Physiol; 2005 Jun; 565(Pt 2):371-80. PubMed ID: 15774523
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Congenital long-QT syndrome caused by a novel mutation in a conserved acidic domain of the cardiac Na+ channel.
    Wei J; Wang DW; Alings M; Fish F; Wathen M; Roden DM; George AL
    Circulation; 1999 Jun; 99(24):3165-71. PubMed ID: 10377081
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Molecular motions of the outer ring of charge of the sodium channel: do they couple to slow inactivation?
    Xiong W; Li RA; Tian Y; Tomaselli GF
    J Gen Physiol; 2003 Sep; 122(3):323-32. PubMed ID: 12913092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interaction between the sodium channel inactivation linker and domain III S4-S5.
    Smith MR; Goldin AL
    Biophys J; 1997 Oct; 73(4):1885-95. PubMed ID: 9336184
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural basis for competition between drug binding and Kvbeta 1.3 accessory subunit-induced N-type inactivation of Kv1.5 channels.
    Decher N; Kumar P; Gonzalez T; Renigunta V; Sanguinetti MC
    Mol Pharmacol; 2005 Oct; 68(4):995-1005. PubMed ID: 16024663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A conserved ring of charge in mammalian Na+ channels: a molecular regulator of the outer pore conformation during slow inactivation.
    Xiong W; Farukhi YZ; Tian Y; Disilvestre D; Li RA; Tomaselli GF
    J Physiol; 2006 Nov; 576(Pt 3):739-54. PubMed ID: 16873407
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Outward stabilization of the S4 segments in domains III and IV enhances lidocaine block of sodium channels.
    Sheets MF; Hanck DA
    J Physiol; 2007 Jul; 582(Pt 1):317-34. PubMed ID: 17510181
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A molecular link between activation and inactivation of sodium channels.
    O'Leary ME; Chen LQ; Kallen RG; Horn R
    J Gen Physiol; 1995 Oct; 106(4):641-58. PubMed ID: 8576701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.