These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 29936117)
1. Phytoextraction and biodegradation of atrazine by Myriophyllum spicatum and evaluation of bacterial communities involved in atrazine degradation in lake sediment. Qu M; Li N; Li H; Yang T; Liu W; Yan Y; Feng X; Zhu D Chemosphere; 2018 Oct; 209():439-448. PubMed ID: 29936117 [TBL] [Abstract][Full Text] [Related]
2. Distribution of atrazine and its phytoremediation by submerged macrophytes in lake sediments. Qu M; Li H; Li N; Liu G; Zhao J; Hua Y; Zhu D Chemosphere; 2017 Feb; 168():1515-1522. PubMed ID: 27932038 [TBL] [Abstract][Full Text] [Related]
3. Transcriptomic profiling of atrazine phytotoxicity and comparative study of atrazine uptake, movement, and metabolism in Potamogeton crispus and Myriophyllum spicatum. Qu M; Mei Y; Liu G; Zhao J; Liu W; Li S; Huang F; Zhu D Environ Res; 2021 Mar; 194():110724. PubMed ID: 33421427 [TBL] [Abstract][Full Text] [Related]
4. Fate of atrazine and its relationship with environmental factors in distinctly different lake sediments associated with hydrophytes. Qu M; Liu G; Zhao J; Li H; Liu W; Yan Y; Feng X; Zhu D Environ Pollut; 2020 Jan; 256():113371. PubMed ID: 31672348 [TBL] [Abstract][Full Text] [Related]
5. [Effect of different type sediments on transformation of phosphorus forms and growth of Myriophyllum spicatum]. Wang SR; Zhao HC; Yang SW; Yi WL; Jin XC Huan Jing Ke Xue; 2010 Nov; 31(11):2666-72. PubMed ID: 21250449 [TBL] [Abstract][Full Text] [Related]
6. Biological and chemical transformation of atrazine in coastal aquatic sediments. Smalling KL; Aelion CM Chemosphere; 2006 Jan; 62(2):188-96. PubMed ID: 16125751 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of Atrazine and Related Compounds in Sediments of Upper Great Lakes. Guo J; Li Z; Ranasinghe P; Bonina S; Hosseini S; Corcoran MB; Smalley C; Kaliappan R; Wu Y; Chen D; Sandy AL; Wang Y; Rockne KJ; Sturchio NC; Giesy JP; Li A Environ Sci Technol; 2016 Jul; 50(14):7335-43. PubMed ID: 27322944 [TBL] [Abstract][Full Text] [Related]
8. Phytoremediation Competence of Composite Heavy-Metal-Contaminated Sediments by Intercropping Li Y; Song Y; Zhang J; Wan Y Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833879 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of monochloroacetic acid (MCA) degradation and toxicity to Lemna gibba, Myriophyllum spicatum, and Myriophyllum sibiricum in aquatic microcosms. Hanson ML; Sibley PK; Ellis DA; Mabury SA; Muir DC; Solomon KR Aquat Toxicol; 2002 Dec; 61(3-4):251-73. PubMed ID: 12359395 [TBL] [Abstract][Full Text] [Related]
10. Some arguments in favor of a Myriophyllum aquaticum growth inhibition test in a water-sediment system as an additional test in risk assessment of herbicides. Tunić T; Knežević V; Kerkez Đ; Tubić A; Šunjka D; Lazić S; Brkić D; Teodorović I Environ Toxicol Chem; 2015 Sep; 34(9):2104-15. PubMed ID: 25943248 [TBL] [Abstract][Full Text] [Related]
11. Bioaccumulation of atrazine and chlorpyrifos to Lumbriculus variegatus from lake sediments. Jantunen AP; Tuikka A; Akkanen J; Kukkonen JV Ecotoxicol Environ Saf; 2008 Nov; 71(3):860-8. PubMed ID: 18353437 [TBL] [Abstract][Full Text] [Related]
12. Atrazine biodegradation to deisopropylatrazine and deethylatrazine in coastal sediments of different land uses. Aelion CM; Mathur PP Environ Toxicol Chem; 2001 Nov; 20(11):2411-9. PubMed ID: 11699763 [TBL] [Abstract][Full Text] [Related]
13. Comparing growth development of Myriophyllum spp. in laboratory and field experiments for ecotoxicological testing. Knauer K; Mohr S; Feiler U Environ Sci Pollut Res Int; 2008 Jun; 15(4):322-31. PubMed ID: 18491155 [TBL] [Abstract][Full Text] [Related]
14. Degradation of atrazine in a laboratory scale model system with Danube river sediment. Vargha M; Takáts Z; Márialigeti K Water Res; 2005 Apr; 39(8):1560-8. PubMed ID: 15878028 [TBL] [Abstract][Full Text] [Related]
15. Enhanced phytoremediation of atrazine-contaminated soil by vetiver (Chrysopogon zizanioides L.) and associated bacteria. Zhang F; Sun S; Rong Y; Mao L; Yang S; Qian L; Li R; Zheng Y Environ Sci Pollut Res Int; 2023 Mar; 30(15):44415-44429. PubMed ID: 36690855 [TBL] [Abstract][Full Text] [Related]
16. Characterisation of new strains of atrazine-degrading Nocardioides sp. isolated from Japanese riverbed sediment using naturally derived river ecosystem. Satsuma K Pest Manag Sci; 2006 Apr; 62(4):340-9. PubMed ID: 16493696 [TBL] [Abstract][Full Text] [Related]
17. Exploring bacterial community structure and function associated with atrazine biodegradation in repeatedly treated soils. Fang H; Lian J; Wang H; Cai L; Yu Y J Hazard Mater; 2015 Apr; 286():457-65. PubMed ID: 25603295 [TBL] [Abstract][Full Text] [Related]
18. Bacterial Communities and Their Predicted Functions Explain the Sediment Nitrogen Changes Along with Submerged Macrophyte Restoration. Wang C; Liu S; Zhang Y; Liu B; He F; Xu D; Zhou Q; Wu Z Microb Ecol; 2018 Oct; 76(3):625-636. PubMed ID: 29502133 [TBL] [Abstract][Full Text] [Related]
19. Characterization of bacterial diversity in an atrazine degrading enrichment culture and degradation of atrazine, cyanuric acid and biuret in industrial wastewater. Dutta A; Vasudevan V; Nain L; Singh N J Environ Sci Health B; 2016; 51(1):24-34. PubMed ID: 26479154 [TBL] [Abstract][Full Text] [Related]
20. Biodegradation of atrazine in sand sediments and in a sand-filter. Goux SJ; Ibanez M; Van Hoorick M; Debongnie P; Agathos SN; Pussemier L Appl Microbiol Biotechnol; 2000 Oct; 54(4):589-96. PubMed ID: 11092637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]