These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 29936346)

  • 1. The effects of Fe-bearing smectite clays on OH formation and diethyl phthalate degradation with polyphenols and H
    Chen N; Fang G; Liu G; Zhou D; Gao J; Gu C
    J Hazard Mater; 2018 Sep; 357():483-490. PubMed ID: 29936346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays.
    Chen N; Fang G; Zhu C; Wu S; Liu G; Dionysiou DD; Wang X; Gao J; Zhou D
    J Hazard Mater; 2020 May; 389():121819. PubMed ID: 31848100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformation of tetracyclines induced by Fe(III)-bearing smectite clays under anoxic dark conditions.
    Chen N; Huang M; Liu C; Fang G; Liu G; Sun Z; Zhou D; Gao J; Gu C
    Water Res; 2019 Nov; 165():114997. PubMed ID: 31470282
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The formation of •OH with Fe-bearing smectite clays and low-molecular-weight thiols: Implication of As(III) removal.
    Sun Z; Huang M; Liu C; Fang G; Chen N; Zhou D; Gao J
    Water Res; 2020 May; 174():115631. PubMed ID: 32114017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of clay minerals on diethyl phthalate degradation in Fenton reactions.
    Chen N; Fang G; Zhou D; Gao J
    Chemosphere; 2016 Dec; 165():52-58. PubMed ID: 27639077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of iron (hydr)oxides on the degradation of diethyl phthalate ester in heterogeneous (photo)-Fenton reactions.
    Shuai W; Gu C; Fang G; Zhou D; Gao J
    J Environ Sci (China); 2019 Jun; 80():5-13. PubMed ID: 30952352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial reaction between organic acids and iron-containing clay minerals: Hydroxyl radical generation and phenolic compounds degradation.
    Zhao S; Liu Z; Zhang R; Liu J; Liu J; Dai Y; Zhang C; Jia H
    Sci Total Environ; 2021 Aug; 783():147025. PubMed ID: 34088140
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation of 1, 4-dioxane by hydroxyl radicals produced from clay minerals.
    Zeng Q; Dong H; Wang X; Yu T; Cui W
    J Hazard Mater; 2017 Jun; 331():88-98. PubMed ID: 28249183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced nontronite-activated H
    Liu X; Yuan S; Zhang P; Zhu J; Tong M
    J Hazard Mater; 2020 Mar; 386():121945. PubMed ID: 31893557
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abiotic transformation of perchloroethylene in homogeneous dithionite solution and in suspensions of dithionite-treated clay minerals.
    Nzengung VA; Castillo RM; Gates WP; Mills GL
    Environ Sci Technol; 2001 Jun; 35(11):2244-51. PubMed ID: 11414025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation.
    Zeng Q; Wang X; Liu X; Huang L; Hu J; Chu R; Tolic N; Dong H
    Environ Sci Technol; 2020 Dec; 54(23):15013-15023. PubMed ID: 32991154
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of hydroxyl radical generation from biochar suspensions: Implications to diethyl phthalate degradation.
    Fang G; Zhu C; Dionysiou DD; Gao J; Zhou D
    Bioresour Technol; 2015 Jan; 176():210-7. PubMed ID: 25461005
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transformation of anthracene on various cation-modified clay minerals.
    Li L; Jia H; Li X; Wang C
    Environ Sci Pollut Res Int; 2015 Jan; 22(2):1261-9. PubMed ID: 25135171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial Mechanisms of Reduced Iron-Containing Smectite-Illite Clay Minerals.
    Guo D; Xia Q; Zeng Q; Wang X; Dong H
    Environ Sci Technol; 2021 Nov; 55(22):15256-15265. PubMed ID: 34723508
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interfacial electron transfer reactions on sulfamethoxazole degradation by reduced nontronite activating H
    Cui HJ; Ning Y; Wu C; Peng W; Cheng D; Yin L; Zhou W; Liao W
    J Environ Sci (China); 2023 Feb; 124():688-698. PubMed ID: 36182174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced reactivity of zero-valent aluminum/O
    Yang R; Cai J; Yang H
    Sci Total Environ; 2021 Jun; 773():145661. PubMed ID: 33940749
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions.
    Mailhot G; Sarakha M; Lavedrine B; Cáceres J; Malato S
    Chemosphere; 2002 Nov; 49(6):525-32. PubMed ID: 12430639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Mechanistic Understanding of Hydrogen Peroxide Decomposition by Vanadium Minerals for Diethyl Phthalate Degradation.
    Fang G; Deng Y; Huang M; Dionysiou DD; Liu C; Zhou D
    Environ Sci Technol; 2018 Feb; 52(4):2178-2185. PubMed ID: 29376648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration/expansion and cation charge compensation modulate the Brønsted basicity of distorted clay water.
    Cervini-Silva J; Larson RA; Stucki JW
    Langmuir; 2006 Mar; 22(7):2961-5. PubMed ID: 16548541
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of diethyl phthalate (DEP) by vacuum ultraviolet process: influencing factors, oxidation products, and toxicity assessment.
    Wu Y; Deng L; Bu L; Zhu S; Shi Z; Zhou S
    Environ Sci Pollut Res Int; 2019 Feb; 26(6):5435-5444. PubMed ID: 30607842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.