BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

409 related articles for article (PubMed ID: 29936385)

  • 1. Preparation of multifunctional PEG-graft-Halloysite Nanotubes for Controlled Drug Release, Tumor Cell Targeting, and Bio-imaging.
    Yamina AM; Fizir M; Itatahine A; He H; Dramou P
    Colloids Surf B Biointerfaces; 2018 Oct; 170():322-329. PubMed ID: 29936385
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): effect of poly(ethylene glycol) grafting density.
    Essa S; Rabanel JM; Hildgen P
    Int J Pharm; 2011 Jun; 411(1-2):178-87. PubMed ID: 21458551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid fabrication of carbon quantum dots as multifunctional nanovehicles for dual-modal targeted imaging and chemotherapy.
    Chiu SH; Gedda G; Girma WM; Chen JK; Ling YC; Ghule AV; Ou KL; Chang JY
    Acta Biomater; 2016 Dec; 46():151-164. PubMed ID: 27662808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface grafting of fluorescent polymers on halloysite nanotubes through metal-free light-induced controlled polymerization: Preparation, characterization and biological imaging.
    Chen J; Cui Y; Liu M; Huang H; Deng F; Mao L; Wen Y; Tian J; Zhang X; Wei Y
    Mater Sci Eng C Mater Biol Appl; 2020 Jun; 111():110804. PubMed ID: 32279750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-assisted and one-step synthesis of PEG passivated fluorescent carbon dots from gelatin as an efficient nanocarrier for methotrexate delivery.
    Arsalani N; Nezhad-Mokhtari P; Jabbari E
    Artif Cells Nanomed Biotechnol; 2019 Dec; 47(1):540-547. PubMed ID: 30829085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Core-shell structured luminescent and mesoporous β-NaYF4:Ce3+/Tb3+@mSiO2-PEG nanospheres for anti-cancer drug delivery.
    Wu Y; Yang D; Kang X; Ma P; Huang S; Zhang Y; Li C; Lin J
    Dalton Trans; 2013 Jul; 42(27):9852-61. PubMed ID: 23689234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional nanocarrier based on clay nanotubes for efficient intracellular siRNA delivery and gene silencing.
    Wu H; Shi Y; Huang C; Zhang Y; Wu J; Shen H; Jia N
    J Biomater Appl; 2014 Apr; 28(8):1180-9. PubMed ID: 23985535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.
    Massaro M; Amorati R; Cavallaro G; Guernelli S; Lazzara G; Milioto S; Noto R; Poma P; Riela S
    Colloids Surf B Biointerfaces; 2016 Apr; 140():505-513. PubMed ID: 26812638
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Embedding fluorescent mesoporous silica nanoparticles into biocompatible nanogels for tumor cell imaging and thermo/pH-sensitive in vitro drug release.
    Gui R; Wang Y; Sun J
    Colloids Surf B Biointerfaces; 2014 Apr; 116():518-25. PubMed ID: 24576821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-Delivery Anticancer Drug Nanoparticles for Synergistic Therapy Against Lung Cancer Cells.
    Shen Y; TanTai J
    Drug Des Devel Ther; 2020; 14():4503-4510. PubMed ID: 33122893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge-Convertible Carbon Dots for Imaging-Guided Drug Delivery with Enhanced in Vivo Cancer Therapeutic Efficiency.
    Feng T; Ai X; An G; Yang P; Zhao Y
    ACS Nano; 2016 Apr; 10(4):4410-20. PubMed ID: 26997431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of tumor-targeted copolymer nanocarrier modified by transferrin.
    Liu R; Wang Y; Li X; Bao W; Xia G; Chen W; Cheng J; Xu Y; Guo L; Chen B
    Drug Des Devel Ther; 2015; 9():2705-19. PubMed ID: 26045659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Incorporation of cisplatin into PEG-wrapped ultrapurified large-inner-diameter MWCNTs for enhanced loading efficiency and release profile.
    Sui L; Yang T; Gao P; Meng A; Wang P; Wu Z; Wang J
    Int J Pharm; 2014 Aug; 471(1-2):157-65. PubMed ID: 24853461
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface modified halloysite nanotubes with different lumen diameters as drug carriers for cancer therapy.
    Liao J; Wang D; Tang A; Fu L; Ouyang J; Yang H
    Chem Commun (Camb); 2021 Sep; 57(74):9470-9473. PubMed ID: 34528970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folic acid-conjugated cationic Ag
    Duman FD; Erkisa M; Khodadust R; Ari F; Ulukaya E; Acar HY
    Nanomedicine (Lond); 2017 Oct; 12(19):2319-2333. PubMed ID: 28875744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced antitumor efficacy of doxorubicin-encapsulated halloysite nanotubes.
    Li K; Zhang Y; Chen M; Hu Y; Jiang W; Zhou L; Li S; Xu M; Zhao Q; Wan R
    Int J Nanomedicine; 2018; 13():19-30. PubMed ID: 29296083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assembling of stimuli-responsive tumor targeting polypyrrole nanotubes drug carrier system for controlled release.
    Chen J; Li X; Li J; Li J; Huang L; Ren T; Yang X; Zhong S
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():316-327. PubMed ID: 29752103
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of paclitaxel by physically loading onto poly(ethylene glycol) (PEG)-graft-carbon nanotubes for potent cancer therapeutics.
    Lay CL; Liu HQ; Tan HR; Liu Y
    Nanotechnology; 2010 Feb; 21(6):065101. PubMed ID: 20057024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of highly fluorescent, amine-functionalized carbon dots from biotin-modified chitosan and silk-fibroin blend for target-specific delivery of antitumor agents.
    Horo H; Saha M; Das H; Mandal B; Kundu LM
    Carbohydr Polym; 2022 Feb; 277():118862. PubMed ID: 34893267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multifunctional Fe
    Xu Y; Shan Y; Zhang Y; Yu B; Shen Y; Cong H
    Nanotechnology; 2019 Oct; 30(42):425102. PubMed ID: 31261137
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.