BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1617 related articles for article (PubMed ID: 29936596)

  • 1. Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease.
    Ipsen DH; Lykkesfeldt J; Tveden-Nyborg P
    Cell Mol Life Sci; 2018 Sep; 75(18):3313-3327. PubMed ID: 29936596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of farnesoid X receptor in hepatic steatosis in nonalcoholic fatty liver disease.
    Xi Y; Li H
    Biomed Pharmacother; 2020 Jan; 121():109609. PubMed ID: 31731192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hepatic lipid accumulation: cause and consequence of dysregulated glucoregulatory hormones.
    Geisler CE; Renquist BJ
    J Endocrinol; 2017 Jul; 234(1):R1-R21. PubMed ID: 28428362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of triggering receptor expressed on myeloid cells 2-associated alterations on lipid metabolism in macrophages in the development of non-alcoholic fatty liver disease.
    Ji PX; Chen YX; Ni XX; Miao Q; Hua J
    J Gastroenterol Hepatol; 2024 Feb; 39(2):369-380. PubMed ID: 38012119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lipid oxidation products in the pathogenesis of non-alcoholic steatohepatitis.
    Bellanti F; Villani R; Facciorusso A; Vendemiale G; Serviddio G
    Free Radic Biol Med; 2017 Oct; 111():173-185. PubMed ID: 28109892
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-Alcoholic Fatty Liver Disease.
    Engin A
    Adv Exp Med Biol; 2017; 960():443-467. PubMed ID: 28585211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 6-gingerol ameliorates age-related hepatic steatosis: Association with regulating lipogenesis, fatty acid oxidation, oxidative stress and mitochondrial dysfunction.
    Li J; Wang S; Yao L; Ma P; Chen Z; Han TL; Yuan C; Zhang J; Jiang L; Liu L; Ke D; Li C; Yamahara J; Li Y; Wang J
    Toxicol Appl Pharmacol; 2019 Jan; 362():125-135. PubMed ID: 30408433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic interaction of fatty acids and oxysterols impairs mitochondrial function and limits liver adaptation during nafld progression.
    Bellanti F; Villani R; Tamborra R; Blonda M; Iannelli G; di Bello G; Facciorusso A; Poli G; Iuliano L; Avolio C; Vendemiale G; Serviddio G
    Redox Biol; 2018 May; 15():86-96. PubMed ID: 29220698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular insights into the role of mitochondria in non-alcoholic fatty liver disease.
    Lee J; Park JS; Roh YS
    Arch Pharm Res; 2019 Nov; 42(11):935-946. PubMed ID: 31571145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 'Micro-managers' of hepatic lipid metabolism and NAFLD.
    Liu W; Cao H; Yan J; Huang R; Ying H
    Wiley Interdiscip Rev RNA; 2015; 6(5):581-93. PubMed ID: 26198708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Fat Feeding in Time-Dependent Manner Affects Metabolic Routes Leading to Nervonic Acid Synthesis in NAFLD.
    Konstantynowicz-Nowicka K; Berk K; Chabowski A; Kasacka I; Bielawiec P; Ɓukaszuk B; Harasim-Symbor E
    Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31387306
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrahydropalmatine ameliorates hepatic steatosis in nonalcoholic fatty liver disease by switching lipid metabolism via AMPK-SREBP-1c-Sirt1 signaling axis.
    Yin X; Liu Z; Wang J
    Phytomedicine; 2023 Oct; 119():155005. PubMed ID: 37562090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD).
    Musso G; Gambino R; Cassader M
    Prog Lipid Res; 2009 Jan; 48(1):1-26. PubMed ID: 18824034
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease.
    Kawano Y; Cohen DE
    J Gastroenterol; 2013 Apr; 48(4):434-41. PubMed ID: 23397118
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Shi Y; Pizzini J; Wang H; Das F; Abdul Azees PA; Ghosh Choudhury G; Barnes JL; Zang M; Weintraub ST; Yeh CK; Katz MS; Kamat A
    Am J Physiol Endocrinol Metab; 2021 Jul; 321(1):E90-E104. PubMed ID: 34029162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic-associated fatty liver disease and lipoprotein metabolism.
    Heeren J; Scheja L
    Mol Metab; 2021 Aug; 50():101238. PubMed ID: 33892169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonalcoholic fatty liver disease: molecular mechanisms for the hepatic steatosis.
    Koo SH
    Clin Mol Hepatol; 2013 Sep; 19(3):210-5. PubMed ID: 24133660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanisms of metabolic associated fatty liver disease (MAFLD): functional analysis of lipid metabolism pathways.
    Badmus OO; Hillhouse SA; Anderson CD; Hinds TD; Stec DE
    Clin Sci (Lond); 2022 Sep; 136(18):1347-1366. PubMed ID: 36148775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The chloroform extract of Cyclocarya paliurus attenuates high-fat diet induced non-alcoholic hepatic steatosis in Sprague Dawley rats.
    Lin Z; Wu ZF; Jiang CH; Zhang QW; Ouyang S; Che CT; Zhang J; Yin ZQ
    Phytomedicine; 2016 Nov; 23(12):1475-1483. PubMed ID: 27765368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Downregulation of miR-192 causes hepatic steatosis and lipid accumulation by inducing SREBF1: Novel mechanism for bisphenol A-triggered non-alcoholic fatty liver disease.
    Lin Y; Ding D; Huang Q; Liu Q; Lu H; Lu Y; Chi Y; Sun X; Ye G; Zhu H; Wei J; Dong S
    Biochim Biophys Acta Mol Cell Biol Lipids; 2017 Sep; 1862(9):869-882. PubMed ID: 28483554
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 81.