BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 29936645)

  • 1. Tricarboxylic acid cycle without malate dehydrogenase in Streptomyces coelicolor M-145.
    Takahashi-Íñiguez T; Barrios-Hernández J; Rodríguez-Maldonado M; Flores ME
    Arch Microbiol; 2018 Nov; 200(9):1279-1286. PubMed ID: 29936645
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulatory role of Streptomyces coelicolor TamR in central metabolism.
    Huang H; Sivapragasam S; Grove A
    Biochem J; 2015 Mar; 466(2):347-58. PubMed ID: 25494937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Corynebacterium glutamicum.
    Molenaar D; van der Rest ME; Drysch A; Yücel R
    J Bacteriol; 2000 Dec; 182(24):6884-91. PubMed ID: 11092846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complex formation between malate dehydrogenase and isocitrate dehydrogenase from Bacillus subtilis is regulated by tricarboxylic acid cycle metabolites.
    Bartholomae M; Meyer FM; Commichau FM; Burkovski A; Hillen W; Seidel G
    FEBS J; 2014 Feb; 281(4):1132-43. PubMed ID: 24325460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mRNA levels of tricarboxylic acid cycle genes in Streptomyces coelicolor M145 cultured on glucose.
    Takahashi-Iñiguez T; Flores ME
    Mol Biol Rep; 2023 Jan; 50(1):719-730. PubMed ID: 36372816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The phosphoenolpyruvate-pyruvate-oxaloacetate node genes and enzymes in Streptomyces coelicolor M-145.
    Llamas-Ramírez R; Takahashi-Iñiguez T; Flores ME
    Int Microbiol; 2020 Aug; 23(3):429-439. PubMed ID: 31900743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bradyrhizobium japonicum does not require alpha-ketoglutarate dehydrogenase for growth on succinate or malate.
    Green LS; Emerich DW
    J Bacteriol; 1997 Jan; 179(1):194-201. PubMed ID: 8981998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Alteration of coenzyme specificity of malate dehydrogenase from Streptomyces coelicolor A3(2) by site-directed mutagenesis.
    Ge YD; Song P; Cao ZY; Wang P; Zhu GP
    Genet Mol Res; 2014 Jul; 13(3):5758-66. PubMed ID: 25117334
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of [3-13C]pyruvate in TCA cycle mutants of yeast.
    Sumegi B; McCammon MT; Sherry AD; Keys DA; McAlister-Henn L; Srere PA
    Biochemistry; 1992 Sep; 31(37):8720-5. PubMed ID: 1390657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Central metabolism in Acinetobacter sp. grown on ethanol].
    Pirog TP; Kuz'minskaia IuV
    Mikrobiologiia; 2003; 72(4):459-65. PubMed ID: 14526533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular cloning, purification, and biochemical characterization of recombinant isocitrate dehydrogenase from Streptomyces coelicolor M-145.
    Takahashi-Iñiguez T; Cruz-Rabadán S; Burciaga-Cifuentes LM; Flores ME
    Biosci Biotechnol Biochem; 2014; 78(9):1490-4. PubMed ID: 25209496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the tricarboxylic acid cycle in gram-positive, facultatively anaerobic bacilli.
    Tanaka N; Hanson RS
    J Bacteriol; 1975 Apr; 122(1):215-223. PubMed ID: 1123317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and biochemical characterization of a thermostable malate dehydrogenase from the mesophile Streptomyces coelicolor A3(2).
    Ge YD; Cao ZY; Wang ZD; Chen LL; Zhu YM; Zhu GP
    Biosci Biotechnol Biochem; 2010; 74(11):2194-201. PubMed ID: 21071865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli.
    van der Rest ME; Frank C; Molenaar D
    J Bacteriol; 2000 Dec; 182(24):6892-9. PubMed ID: 11092847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive oxygen species production in cardiac mitochondria after complex I inhibition: Modulation by substrate-dependent regulation of the NADH/NAD(+) ratio.
    Korge P; Calmettes G; Weiss JN
    Free Radic Biol Med; 2016 Jul; 96():22-33. PubMed ID: 27068062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Activity of oxidative enzymes of the tricarboxylic acid cycle in the liver of rats during hypokinesia].
    Ganin IuA
    Kosm Biol Aviakosm Med; 1983; 17(1):67-71. PubMed ID: 6843075
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolism of alpha-ketoglutarate by a sucA mutant of Bradyrhizobium japonicum: evidence for an alternative tricarboxylic acid cycle.
    Green LS; Li Y; Emerich DW; Bergersen FJ; Day DA
    J Bacteriol; 2000 May; 182(10):2838-44. PubMed ID: 10781553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Activity of Krebs cycle oxidative enzymes in the brain in hypothermia].
    Volzhina-Atabegova NG
    Vopr Med Khim; 1979; 25(3):308-11. PubMed ID: 452497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global transcription analysis of Krebs tricarboxylic acid cycle mutants reveals an alternating pattern of gene expression and effects on hypoxic and oxidative genes.
    McCammon MT; Epstein CB; Przybyla-Zawislak B; McAlister-Henn L; Butow RA
    Mol Biol Cell; 2003 Mar; 14(3):958-72. PubMed ID: 12631716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of oxaloacetate in Bacillus subtilis mutants lacking the 2-ketoglutarate dehydrogenase enzymatic complex.
    Fisher SH; Magasanik B
    J Bacteriol; 1984 Apr; 158(1):55-62. PubMed ID: 6425269
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.