These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 29936828)

  • 1. Tyrosine Sulfation Restricts the Conformational Ensemble of a Flexible Peptide, Strengthening the Binding Affinity for an Antibody.
    Miyanabe K; Yamashita T; Abe Y; Akiba H; Takamatsu Y; Nakakido M; Hamakubo T; Ueda T; Caaveiro JMM; Tsumoto K
    Biochemistry; 2018 Jul; 57(28):4177-4185. PubMed ID: 29936828
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of flexible peptide recognition by an antibody.
    Makabe K
    J Biochem; 2020 Apr; 167(4):343-345. PubMed ID: 32027351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous sulfopeptides and sulfoproteins: synthetic approaches and applications to characterize the effects of tyrosine sulfation on biochemical function.
    Stone MJ; Payne RJ
    Acc Chem Res; 2015 Aug; 48(8):2251-61. PubMed ID: 26196117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silicon Nanowire Field-Effect Transistor as Biosensing Platforms for Post-Translational Modification.
    Su PC; Chen BH; Lee YC; Yang YS
    Biosensors (Basel); 2020 Dec; 10(12):. PubMed ID: 33371301
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tyrosine sulfation as a protein post-translational modification.
    Yang YS; Wang CC; Chen BH; Hou YH; Hung KS; Mao YC
    Molecules; 2015 Jan; 20(2):2138-64. PubMed ID: 25635379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of tyrosine sulfation on proteins.
    Kanan Y; Al Ubaidi MR
    Curr Protoc Protein Sci; 2015 Apr; 80():14.7.1-14.7.20. PubMed ID: 25829299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the binding of a carbohydrate-mimetic peptide to its complementary anticarbohydrate antibody by STD-NMR spectroscopy and molecular-dynamics simulations.
    Szczepina MG; Bleile DW; Pinto BM
    Chemistry; 2011 Oct; 17(41):11446-55. PubMed ID: 21953925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering of a Small Protein Scaffold To Recognize Sulfotyrosine with High Specificity.
    Lawrie J; Waldrop S; Morozov A; Niu W; Guo J
    ACS Chem Biol; 2021 Aug; 16(8):1508-1517. PubMed ID: 34251168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is protein context responsible for peptide-mediated interactions?
    Zhou P; Miao Q; Yan F; Li Z; Jiang Q; Wen L; Meng Y
    Mol Omics; 2019 Aug; 15(4):280-295. PubMed ID: 31112188
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and energetic determinants of tyrosylprotein sulfotransferase sulfation specificity.
    Nedumpully-Govindan P; Li L; Alexov EG; Blenner MA; Ding F
    Bioinformatics; 2014 Aug; 30(16):2302-9. PubMed ID: 24794930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An integrative approach combining ion mobility mass spectrometry, X-ray crystallography, and nuclear magnetic resonance spectroscopy to study the conformational dynamics of α1 -antitrypsin upon ligand binding.
    Nyon MP; Prentice T; Day J; Kirkpatrick J; Sivalingam GN; Levy G; Haq I; Irving JA; Lomas DA; Christodoulou J; Gooptu B; Thalassinos K
    Protein Sci; 2015 Aug; 24(8):1301-12. PubMed ID: 26011795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current status and future prospects for research on tyrosine sulfation.
    Sasaki N
    Curr Pharm Biotechnol; 2012 Nov; 13(14):2632-41. PubMed ID: 22039814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the functional roles of tyrosine sulfation using synthetic sulfopeptides and sulfoproteins.
    Maxwell JWC; Payne RJ
    Curr Opin Chem Biol; 2020 Oct; 58():72-85. PubMed ID: 32777686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward a framework for sulfoproteomics: Synthesis and characterization of sulfotyrosine-containing peptides.
    Seibert C; Sakmar TP
    Biopolymers; 2008; 90(3):459-77. PubMed ID: 17680702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determination of the sites of tyrosine O-sulfation in peptides and proteins.
    Yu Y; Hoffhines AJ; Moore KL; Leary JA
    Nat Methods; 2007 Jul; 4(7):583-8. PubMed ID: 17558413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intramolecular H-bonds govern the recognition of a flexible peptide by an antibody.
    Miyanabe K; Akiba H; Kuroda D; Nakakido M; Kusano-Arai O; Iwanari H; Hamakubo T; Caaveiro JMM; Tsumoto K
    J Biochem; 2018 Jul; 164(1):65-76. PubMed ID: 29924367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tyrosine sulfation enhances but is not required for PSGL-1 rolling adhesion on P-selectin.
    Rodgers SD; Camphausen RT; Hammer DA
    Biophys J; 2001 Oct; 81(4):2001-9. PubMed ID: 11566773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of chemokine recognition by site-specific tyrosine sulfation of receptor peptides.
    Simpson LS; Zhu JZ; Widlanski TS; Stone MJ
    Chem Biol; 2009 Feb; 16(2):153-61. PubMed ID: 19246006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Synthesis of Sulfated CCR5 Peptide Surrogates and their Use to Study Receptor-Ligand Interactions.
    Naider F; Anglister J
    Protein Pept Lett; 2018; 25(12):1124-1136. PubMed ID: 30381052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosine sulfation influences the chemokine binding selectivity of peptides derived from chemokine receptor CCR3.
    Zhu JZ; Millard CJ; Ludeman JP; Simpson LS; Clayton DJ; Payne RJ; Widlanski TS; Stone MJ
    Biochemistry; 2011 Mar; 50(9):1524-34. PubMed ID: 21235238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.