These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 29937051)

  • 21. Toolboxes for cyanobacteria: Recent advances and future direction.
    Sun T; Li S; Song X; Diao J; Chen L; Zhang W
    Biotechnol Adv; 2018; 36(4):1293-1307. PubMed ID: 29729377
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cyanobacteria: Promising biocatalysts for sustainable chemical production.
    Knoot CJ; Ungerer J; Wangikar PP; Pakrasi HB
    J Biol Chem; 2018 Apr; 293(14):5044-5052. PubMed ID: 28972147
    [TBL] [Abstract][Full Text] [Related]  

  • 23. One-vector CRISPR/Cas9 genome engineering of the industrial fungus Ashbya gossypii.
    Jiménez A; Muñoz-Fernández G; Ledesma-Amaro R; Buey RM; Revuelta JL
    Microb Biotechnol; 2019 Nov; 12(6):1293-1301. PubMed ID: 31055883
    [TBL] [Abstract][Full Text] [Related]  

  • 24. CRISPR-cas System as a Genome Engineering Platform: Applications in Biomedicine and Biotechnology.
    Hashemi A
    Curr Gene Ther; 2018; 18(2):115-124. PubMed ID: 29473500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Advancing metabolic engineering of Yarrowia lipolytica using the CRISPR/Cas system.
    Shi TQ; Huang H; Kerkhoven EJ; Ji XJ
    Appl Microbiol Biotechnol; 2018 Nov; 102(22):9541-9548. PubMed ID: 30238143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production.
    Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC
    Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy biotechnology in the CRISPR-Cas9 era.
    Estrela R; Cate JH
    Curr Opin Biotechnol; 2016 Apr; 38():79-84. PubMed ID: 26874259
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extending CRISPR-Cas9 Technology from Genome Editing to Transcriptional Engineering in the Genus Clostridium.
    Bruder MR; Pyne ME; Moo-Young M; Chung DA; Chou CP
    Appl Environ Microbiol; 2016 Oct; 82(20):6109-6119. PubMed ID: 27496775
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CRISPR interference-mediated metabolic engineering of Corynebacterium glutamicum for homo-butyrate production.
    Yoon J; Woo HM
    Biotechnol Bioeng; 2018 Aug; 115(8):2067-2074. PubMed ID: 29704438
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Targeted Repression of Essential Genes To Arrest Growth and Increase Carbon Partitioning and Biofuel Titers in Cyanobacteria.
    Shabestary K; Anfelt J; Ljungqvist E; Jahn M; Yao L; Hudson EP
    ACS Synth Biol; 2018 Jul; 7(7):1669-1675. PubMed ID: 29874914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cyanobacterial chassis engineering for enhancing production of biofuels and chemicals.
    Gao X; Sun T; Pei G; Chen L; Zhang W
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3401-13. PubMed ID: 26883347
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing CRISPR/Cas 9 System for manipulation of DNA virus genome.
    Ebrahimi S; Teimoori A; Khanbabaei H; Tabasi M
    Rev Med Virol; 2019 Jan; 29(1):e2009. PubMed ID: 30260068
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthetic Biology Toolkits for Metabolic Engineering of Cyanobacteria.
    Xia PF; Ling H; Foo JL; Chang MW
    Biotechnol J; 2019 Jun; 14(6):e1800496. PubMed ID: 30927496
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Challenges and opportunity of recent genome editing and multi-omics in cyanobacteria and microalgae for biorefinery.
    Lin WR; Tan SI; Hsiang CC; Sung PK; Ng IS
    Bioresour Technol; 2019 Nov; 291():121932. PubMed ID: 31387837
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR-based metabolic editing: Next-generation metabolic engineering in plants.
    Sabzehzari M; Zeinali M; Naghavi MR
    Gene; 2020 Oct; 759():144993. PubMed ID: 32717311
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Applications of CRISPR in a Microbial Cell Factory: From Genome Reconstruction to Metabolic Network Reprogramming.
    Wu Y; Liu Y; Lv X; Li J; Du G; Liu L
    ACS Synth Biol; 2020 Sep; 9(9):2228-2238. PubMed ID: 32794766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genome Editing in Clostridium saccharoperbutylacetonicum N1-4 with the CRISPR-Cas9 System.
    Wang S; Dong S; Wang P; Tao Y; Wang Y
    Appl Environ Microbiol; 2017 May; 83(10):. PubMed ID: 28258147
    [No Abstract]   [Full Text] [Related]  

  • 38. [A CRISPR/dCpf1-based transcriptional repression system for
    Yang Y; Li N; Zhou J; Chen J
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):719-736. PubMed ID: 35234393
    [No Abstract]   [Full Text] [Related]  

  • 39. Direct Photosynthetic Production of Plastic Building Block Chemicals from CO
    Song X; Wang Y; Diao J; Li S; Chen L; Zhang W
    Adv Exp Med Biol; 2018; 1080():215-238. PubMed ID: 30091097
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of functional genomics for domestication of novel non-model microbes.
    Bales MK; Vergara MM; Eckert CA
    J Ind Microbiol Biotechnol; 2024 Jan; 51():. PubMed ID: 38925657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.