These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 29937051)

  • 41. Engineering Cyanobacteria for Photosynthetic Production of C3 Platform Chemicals and Terpenoids from CO
    Ni J; Tao F; Xu P; Yang C
    Adv Exp Med Biol; 2018; 1080():239-259. PubMed ID: 30091098
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Base editing for reprogramming cyanobacterium Synechococcus elongatus.
    Wang SY; Li X; Wang SG; Xia PF
    Metab Eng; 2023 Jan; 75():91-99. PubMed ID: 36403709
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CRISPR technologies for bacterial systems: Current achievements and future directions.
    Choi KR; Lee SY
    Biotechnol Adv; 2016 Nov; 34(7):1180-1209. PubMed ID: 27566508
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Metabolic pathway rewiring in engineered cyanobacteria for solar-to-chemical and solar-to-fuel production from CO
    Woo HM
    Bioengineered; 2018 Jan; 9(1):2-5. PubMed ID: 28430539
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a base editor for convenient and multiplex genome editing in cyanobacteria.
    Li XD; Liu LM; Xi YC; Sun QW; Luo Z; Huang HL; Wang XW; Jiang HB; Chen W
    Commun Biol; 2024 Aug; 7(1):994. PubMed ID: 39143188
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Repurposing the Endogenous Type I-E CRISPR/Cas System for Gene Repression in
    Qin Z; Yang Y; Yu S; Liu L; Chen Y; Chen J; Zhou J
    ACS Synth Biol; 2021 Jan; 10(1):84-93. PubMed ID: 33399467
    [No Abstract]   [Full Text] [Related]  

  • 47. Recent advances in CRISPR/Cas9 mediated genome editing in Bacillus subtilis.
    Hong KQ; Liu DY; Chen T; Wang ZW
    World J Microbiol Biotechnol; 2018 Sep; 34(10):153. PubMed ID: 30269229
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiplexed CRISPR-Cpf1-Mediated Genome Editing in Clostridium difficile toward the Understanding of Pathogenesis of C. difficile Infection.
    Hong W; Zhang J; Cui G; Wang L; Wang Y
    ACS Synth Biol; 2018 Jun; 7(6):1588-1600. PubMed ID: 29863336
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Riboregulator elements as tools to engineer gene expression in cyanobacteria.
    Ueno K; Tsukakoshi K; Ikebukuro K
    Appl Microbiol Biotechnol; 2018 Sep; 102(18):7717-7723. PubMed ID: 30006783
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Use of CRISPR/Cas9 gene-editing tools for developing models in drug discovery.
    Ahmad G; Amiji M
    Drug Discov Today; 2018 Mar; 23(3):519-533. PubMed ID: 29326075
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Efficiency Genome Editing of Streptomyces Species by an Engineered CRISPR/Cas System.
    Wang Y; Cobb RE; Zhao H
    Methods Enzymol; 2016; 575():271-84. PubMed ID: 27417933
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The use of CRISPR/Cas associated technologies for cell transplant applications.
    Cowan PJ
    Curr Opin Organ Transplant; 2016 Oct; 21(5):461-6. PubMed ID: 27517504
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Gene editing for cell engineering: trends and applications.
    Gupta SK; Shukla P
    Crit Rev Biotechnol; 2017 Aug; 37(5):672-684. PubMed ID: 27535623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The promise and peril of CRISPR gene drives: Genetic variation and inbreeding may impede the propagation of gene drives based on the CRISPR genome editing technology.
    Zentner GE; Wade MJ
    Bioessays; 2017 Oct; 39(10):. PubMed ID: 28863233
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metabolic engineering of cyanobacteria for the synthesis of commodity products.
    Angermayr SA; Gorchs Rovira A; Hellingwerf KJ
    Trends Biotechnol; 2015 Jun; 33(6):352-61. PubMed ID: 25908503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Progress and perspective on cyanobacterial glycogen metabolism engineering.
    Luan G; Zhang S; Wang M; Lu X
    Biotechnol Adv; 2019; 37(5):771-786. PubMed ID: 30978387
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The commercialization of genome-editing technologies.
    Brinegar K; K Yetisen A; Choi S; Vallillo E; Ruiz-Esparza GU; Prabhakar AM; Khademhosseini A; Yun SH
    Crit Rev Biotechnol; 2017 Nov; 37(7):924-932. PubMed ID: 28100080
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering highly productive cyanobacteria towards carbon negative emissions technologies.
    Victoria AJ; Astbury MJ; McCormick AJ
    Curr Opin Biotechnol; 2024 Jun; 87():103141. PubMed ID: 38735193
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cell-Free Transcription-Coupled CRISPR/Cas12a Assay for Prototyping Cyanobacterial Promoters.
    Choi YN; Shin YR; Park JM; Lee JW
    ACS Synth Biol; 2021 Jun; 10(6):1300-1307. PubMed ID: 34015913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.