These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29937121)

  • 1. Simulation of elution profiles in liquid chromatography - III. Stationary phase gradients.
    Jeong LN; Rutan SC
    J Chromatogr A; 2018 Aug; 1564():128-136. PubMed ID: 29937121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Closed form approximations to predict retention times and peak widths in gradient elution under conditions of sample volume overload and sample solvent mismatch.
    Rutan SC; Jeong LN; Carr PW; Stoll DR; Weber SG
    J Chromatogr A; 2021 Sep; 1653():462376. PubMed ID: 34293516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental- and simulation-based investigations of coupling a mobile phase gradient with a continuous stationary phase gradient.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2019 Sep; 1602():237-245. PubMed ID: 31147155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of elution profiles in liquid chromatography - II: Investigation of injection volume overload under gradient elution conditions applied to second dimension separations in two-dimensional liquid chromatography.
    Stoll DR; Sajulga RW; Voigt BN; Larson EJ; Jeong LN; Rutan SC
    J Chromatogr A; 2017 Nov; 1523():162-172. PubMed ID: 28747254
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation of elution profiles in liquid chromatography-I: Gradient elution conditions, and with mismatched injection and mobile phase solvents.
    Jeong LN; Sajulga R; Forte SG; Stoll DR; Rutan SC
    J Chromatogr A; 2016 Jul; 1457():41-9. PubMed ID: 27345210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studying the possibilities of dual stationary phase gradients to explore alternative selectivities in liquid chromatography.
    Fekete S; Lauber M
    J Chromatogr A; 2022 Oct; 1681():463492. PubMed ID: 36116368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Destructive stationary phase gradients for reversed-phase/hydrophilic interaction liquid chromatography.
    Cain CN; Forzano AV; Rutan SC; Collinson MM
    J Chromatogr A; 2018 Oct; 1570():82-90. PubMed ID: 30104058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peak dispersion in gradient elution: An insight based on the plate model.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Feb; 1613():460670. PubMed ID: 31732158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model. III. Polar stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):200-13. PubMed ID: 16487536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simulation of elution profiles in liquid chromatography - IV: Experimental characterization and modeling of solute injection profiles from a modulation valve used in two-dimensional liquid chromatography.
    Weatherbee SL; Brau T; Stoll DR; Rutan SC; Collinson MM
    J Chromatogr A; 2020 Aug; 1626():461373. PubMed ID: 32797851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Band broadening along gradient reversed phase columns: a potential gain in resolution factor.
    Gritti F; Guiochon G
    J Chromatogr A; 2014 May; 1342():24-9. PubMed ID: 24735602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gradient elution in aqueous normal-phase liquid chromatography on hydrosilated silica-based stationary phases.
    Soukup J; Janás P; Jandera P
    J Chromatogr A; 2013 Apr; 1286():111-8. PubMed ID: 23497850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the retention dependence on the physicochemical properties of solutes in reversed-phase liquid chromatographic linear gradient elution based on linear solvation energy relationships.
    Li J; Cai B
    J Chromatogr A; 2001 Jan; 905(1-2):35-46. PubMed ID: 11206804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benefits of solvent concentration pulses in retention time modelling of liquid chromatography.
    Navarro-Huerta JA; Gisbert-Alonso A; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2019 Jul; 1597():76-88. PubMed ID: 30902430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength.
    Wolcott RG; Dolan JW; Snyder LR
    J Chromatogr A; 2000 Feb; 869(1-2):3-25. PubMed ID: 10720221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles.
    Wang N; Boswell PG
    J Chromatogr A; 2017 Oct; 1520():75-82. PubMed ID: 28864110
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.
    Gritti F
    J Chromatogr A; 2016 Nov; 1473():38-47. PubMed ID: 27814914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of gradient retention data for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides.
    Vaňková N; Česla P
    J Chromatogr A; 2017 Feb; 1485():82-89. PubMed ID: 28108080
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review.
    Jandera P; Hájek T
    J Sep Sci; 2018 Jan; 41(1):145-162. PubMed ID: 29072360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns.
    Jandera P; Hájek T
    J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.