These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 29937121)

  • 21. Model-based design of gradient elution in liquid-liquid chromatography: Application to the separation of cannabinoids.
    Gerigk M; Luca SV; Schwarzenbach S; Minceva M
    J Chromatogr A; 2024 May; 1722():464888. PubMed ID: 38613932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. General theory of peak compression in liquid chromatography.
    Gritti F
    J Chromatogr A; 2016 Feb; 1433():114-22. PubMed ID: 26805599
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Extension of the linear solvent strength retention model including a parameter that describes the elution strength changes in liquid chromatography.
    Baeza-Baeza JJ; García-Alvarez-Coque MC
    J Chromatogr A; 2020 Mar; 1615():460757. PubMed ID: 31831147
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Determining gradient conditions for peptide purification in RPLC with machine-learning-based retention time predictions.
    Samuelsson J; Eiriksson FF; Åsberg D; Thorsteinsdóttir M; Fornstedt T
    J Chromatogr A; 2019 Aug; 1598():92-100. PubMed ID: 30961963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retention prediction of monoamine neurotransmitters in gradient liquid chromatography.
    Urban J; Nechvátalová M; Hekerle L
    J Sep Sci; 2022 Sep; 45(17):3319-3327. PubMed ID: 35855653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Retention behaviour of imidazolium ionic liquid cations on 1.7 μm ethylene bridged hybrid silica column using acetonitrile-rich and water-rich mobile phases.
    Orentienė A; Olšauskaitė V; Vičkačkaitė V; Padarauskas A
    J Chromatogr A; 2011 Sep; 1218(39):6884-91. PubMed ID: 21871632
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Experimental design and re-parameterization of the Neue-Kuss model for accurate and precise prediction of isocratic retention factors from gradient measurements in reversed phase liquid chromatography.
    Rutan SC; Cash K; Stoll DR
    J Chromatogr A; 2023 Nov; 1711():464443. PubMed ID: 37890376
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures.
    Taraji M; Haddad PR; Amos RI; Talebi M; Szucs R; Dolan JW; Pohl CA
    J Chromatogr A; 2017 Feb; 1486():59-67. PubMed ID: 28049585
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Evaluation of the retention properties of two cyclodextrin stationary phases with different spacers].
    Zhao Y; Guo Z; Xue X; Liang X
    Se Pu; 2011 Sep; 29(9):885-9. PubMed ID: 22233077
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterisation of stationary phases in subcritical fluid chromatography by the solvation parameter model. II. Comparison tools.
    West C; Lesellier E
    J Chromatogr A; 2006 Mar; 1110(1-2):191-9. PubMed ID: 16500667
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Limits of multi-linear gradient optimisation in reversed-phase liquid chromatography.
    Concha-Herrera V; Vivó-Truyols G; Torres-Lapasió JR; García-Alvarez-Coque MC
    J Chromatogr A; 2005 Jan; 1063(1-2):79-88. PubMed ID: 15700459
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of stationary phases in subcritical fluid chromatography with the solvation parameter model IV. Aromatic stationary phases.
    West C; Lesellier E
    J Chromatogr A; 2006 May; 1115(1-2):233-45. PubMed ID: 16529759
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Gradient elution in micellar liquid chromatography. I. Micelle concentration gradient.
    Madamba-Tan LS; Strasters JK; Khaledi MG
    J Chromatogr A; 1994 Oct; 683(2):321-34. PubMed ID: 7981837
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A study of column equilibration time in hydrophilic interaction chromatography.
    McCalley DV
    J Chromatogr A; 2018 Jun; 1554():61-70. PubMed ID: 29706400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Methacrylate monolithic capillary columns for gradient peptide separations.
    Pruim P; Ohman M; Huo Y; Schoenmakers PJ; Kok WT
    J Chromatogr A; 2008 Oct; 1208(1-2):109-15. PubMed ID: 18771770
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of an ion chromatographic gradient retention model from isocratic elution experiments.
    Bolanca T; Cerjan-Stefanović S; Lusa M; Rogosić M; Ukić S
    J Chromatogr A; 2006 Jul; 1121(2):228-35. PubMed ID: 16698028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A general strategy for performing temperature-programming in high performance liquid chromatography--prediction of segmented temperature gradients.
    Wiese S; Teutenberg T; Schmidt TC
    J Chromatogr A; 2011 Sep; 1218(39):6898-906. PubMed ID: 21872258
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature-assisted solute focusing with sequential trap/release zones in isocratic and gradient capillary liquid chromatography: Simulation and experiment.
    Groskreutz SR; Weber SG
    J Chromatogr A; 2016 Nov; 1474():95-108. PubMed ID: 27836226
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis and characterization of hypercrosslinked, surface-confined, ultra-stable silica-based stationary phases.
    Trammell BC; Ma L; Luo H; Hillmyer MA; Carr PW
    J Chromatogr A; 2004 Dec; 1060(1-2):61-76. PubMed ID: 15628152
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part I. Polymethacrylate-based monolithic column with incorporated bare fumed silica nanoparticles for hydrophilic interaction liquid chromatography.
    Aydoğan C; El Rassi Z
    J Chromatogr A; 2016 May; 1445():55-61. PubMed ID: 27059399
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.