These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 29937350)

  • 1. Zebrafish Differentially Process Color across Visual Space to Match Natural Scenes.
    Zimmermann MJY; Nevala NE; Yoshimatsu T; Osorio D; Nilsson DE; Berens P; Baden T
    Curr Biol; 2018 Jul; 28(13):2018-2032.e5. PubMed ID: 29937350
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zebrafish Retinal Ganglion Cells Asymmetrically Encode Spectral and Temporal Information across Visual Space.
    Zhou M; Bear J; Roberts PA; Janiak FK; Semmelhack J; Yoshimatsu T; Baden T
    Curr Biol; 2020 Aug; 30(15):2927-2942.e7. PubMed ID: 32531283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Retinal Basis of Vertebrate Color Vision.
    Baden T; Osorio D
    Annu Rev Vis Sci; 2019 Sep; 5():177-200. PubMed ID: 31226010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zebrafish inner retina: local signals for spatial position, luminance, and color contrast.
    Burkhardt DA
    Vis Neurosci; 2012 Sep; 29(4-5):229-36. PubMed ID: 22877609
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The elementary representation of spatial and color vision in the human retina.
    Sabesan R; Schmidt BP; Tuten WS; Roorda A
    Sci Adv; 2016 Sep; 2(9):e1600797. PubMed ID: 27652339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colored visual stimuli evoke spectrally tuned neuronal responses across the central nervous system of zebrafish larvae.
    Fornetto C; Tiso N; Pavone FS; Vanzi F
    BMC Biol; 2020 Nov; 18(1):172. PubMed ID: 33243249
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Independence of color and luminance edges in natural scenes.
    Hansen T; Gegenfurtner KR
    Vis Neurosci; 2009; 26(1):35-49. PubMed ID: 19152717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signals for color and achromatic contrast in the goldfish inner retina.
    Burkhardt DA
    Vis Neurosci; 2014 Nov; 31(6):365-71. PubMed ID: 24901896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circuit mechanisms for colour vision in zebrafish.
    Baden T
    Curr Biol; 2021 Jun; 31(12):R807-R820. PubMed ID: 34157269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural circuits in the mouse retina support color vision in the upper visual field.
    Szatko KP; Korympidou MM; Ran Y; Berens P; Dalkara D; Schubert T; Euler T; Franke K
    Nat Commun; 2020 Jul; 11(1):3481. PubMed ID: 32661226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural environment statistics in the upper and lower visual field are reflected in mouse retinal specializations.
    Qiu Y; Zhao Z; Klindt D; Kautzky M; Szatko KP; Schaeffel F; Rifai K; Franke K; Busse L; Euler T
    Curr Biol; 2021 Aug; 31(15):3233-3247.e6. PubMed ID: 34107304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ancestral circuits for vertebrate color vision emerge at the first retinal synapse.
    Yoshimatsu T; Bartel P; Schröder C; Janiak FK; St-Pierre F; Berens P; Baden T
    Sci Adv; 2021 Oct; 7(42):eabj6815. PubMed ID: 34644120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oblique color vision in an open-habitat bird: spectral sensitivity, photoreceptor distribution and behavioral implications.
    Moore BA; Baumhardt P; Doppler M; Randolet J; Blackwell BF; DeVault TL; Loew ER; Fernández-Juricic E
    J Exp Biol; 2012 Oct; 215(Pt 19):3442-52. PubMed ID: 22956248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Amacrine cells differentially balance zebrafish color circuits in the central and peripheral retina.
    Wang X; Roberts PA; Yoshimatsu T; Lagnado L; Baden T
    Cell Rep; 2023 Feb; 42(2):112055. PubMed ID: 36757846
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Objective assessment of chromatic and achromatic pattern adaptation reveals the temporal response properties of different visual pathways.
    Robson AG; Kulikowski JJ
    Vis Neurosci; 2012 Nov; 29(6):301-13. PubMed ID: 23206417
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction of "chromatic" and "achromatic" circuits in Drosophila color opponent processing.
    Pagni M; Haikala V; Oberhauser V; Meyer PB; Reiff DF; Schnaitmann C
    Curr Biol; 2021 Apr; 31(8):1687-1698.e4. PubMed ID: 33636123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evolution of the circuitry for conscious color vision in primates.
    Neitz J; Neitz M
    Eye (Lond); 2017 Feb; 31(2):286-300. PubMed ID: 27935605
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
    Wool LE; Packer OS; Zaidi Q; Dacey DM
    J Neurosci; 2019 Oct; 39(40):7893-7909. PubMed ID: 31405926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatio-chromatic contrast sensitivity under mesopic and photopic light levels.
    Wuerger S; Ashraf M; Kim M; Martinovic J; Pérez-Ortiz M; Mantiuk RK
    J Vis; 2020 Apr; 20(4):23. PubMed ID: 32347909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in color science: from retina to behavior.
    Conway BR; Chatterjee S; Field GD; Horwitz GD; Johnson EN; Koida K; Mancuso K
    J Neurosci; 2010 Nov; 30(45):14955-63. PubMed ID: 21068298
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.