These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 2993769)

  • 21. Intensity dependence of the compound action potential and the deconvolution technique.
    Bappert E; Hoke M; Lütkenhöner ; Niestroj B
    Scand Audiol Suppl; 1979 Mar; 11():45-57. PubMed ID: 299188
    [No Abstract]   [Full Text] [Related]  

  • 22. The antidromic compound action potential of the auditory nerve.
    Brown MC
    J Neurophysiol; 1994 May; 71(5):1826-34. PubMed ID: 8064350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rate-intensity-functions of pigeon auditory primary afferents.
    Richter CP; Heynert S; Klinke R
    Hear Res; 1995 Mar; 83(1-2):19-25. PubMed ID: 7607985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Physiological properties of the electrically stimulated auditory nerve. II. Single fiber recordings.
    van den Honert C; Stypulkowski PH
    Hear Res; 1984 Jun; 14(3):225-43. PubMed ID: 6480511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dynamic effects in the input/output relationship of auditory nerve.
    Yates GK
    Hear Res; 1987; 27(3):221-30. PubMed ID: 3610850
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of moderately intense sound on auditory sensitivity in rhesus monkeys: behavioral and neural observations.
    Lonsbury-Martin BL; Martin GK
    J Neurophysiol; 1981 Sep; 46(3):563-86. PubMed ID: 7299434
    [No Abstract]   [Full Text] [Related]  

  • 27. Development of auditory-evoked potentials in the cat. I. Onset of response and development of sensitivity.
    Walsh EJ; McGee J; Javel E
    J Acoust Soc Am; 1986 Mar; 79(3):712-24. PubMed ID: 3007594
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of recovery properties on the discharge pattern of auditory nerve fibres.
    Lütkenhöner B; Hoke M; Bappert E
    Scand Audiol Suppl; 1979 Mar; 11():25-43. PubMed ID: 299187
    [No Abstract]   [Full Text] [Related]  

  • 29. Rapid adaptation depends on the characteristic frequency of auditory nerve fibers.
    Westerman LA; Smith RL
    Hear Res; 1985 Feb; 17(2):197-8. PubMed ID: 4008356
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulse-number distribution for the neural spike train in the cat's auditory nerve.
    Teich MC; Khanna SM
    J Acoust Soc Am; 1985 Mar; 77(3):1110-28. PubMed ID: 3980865
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Rate-versus-level functions of primary auditory nerve fibres: evidence for square law behaviour of all fibre categories in the guinea pig.
    Müller M; Robertson D; Yates GK
    Hear Res; 1991 Sep; 55(1):50-6. PubMed ID: 1752794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Dependence of the acoustic reflex threshold on the duration of the noise stimulus].
    Bazarov VG; Moroz BS
    Vestn Otorinolaringol; 1975; (3):13-8. PubMed ID: 1146104
    [No Abstract]   [Full Text] [Related]  

  • 33. Frequency selectivity of phase-locking of complex sounds in the auditory nerve of the rat.
    Møller AR
    Hear Res; 1983 Sep; 11(3):267-84. PubMed ID: 6630083
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantitative analysis of intensity--rate and intensity--latency functions in peripheral auditory nerve fibers of northern leopard frogs (Rana p. pipiens).
    Feng AS
    Hear Res; 1982 Apr; 6(3):241-6. PubMed ID: 6979535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of auditory brainstem response to tone pip stimuli in the rat.
    Blatchley BJ; Cooper WA; Coleman JR
    Brain Res; 1987 Mar; 429(1):75-84. PubMed ID: 3567661
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Age-dependent changes of the compound action potential in the guinea pig.
    Dum N
    Arch Otorhinolaryngol; 1983; 238(2):179-87. PubMed ID: 6626030
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of refractory properties on the response of single auditory nerve fibres to sinusoidal stimuli.
    Lütkenhöner B; Hoke M; Bappert E
    Hear Res; 1980 Jun; 2(3-4):565-72. PubMed ID: 7410262
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulus and recovery dependence of cat cochlear nerve fiber spike discharge probability.
    Gaumond RP; Molnar CE; Kim DO
    J Neurophysiol; 1982 Sep; 48(3):856-73. PubMed ID: 6290620
    [No Abstract]   [Full Text] [Related]  

  • 39. Rapid adaptation of auditory-nerve fibers: fine structure at high stimulus intensities.
    Lütkenhöner B; Smith RL
    Hear Res; 1986; 24(3):289-94. PubMed ID: 3793645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrophysiology of the auditory system.
    Abbas PJ
    Clin Phys Physiol Meas; 1988 Feb; 9(1):1-31. PubMed ID: 3282752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.