These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 2993783)
61. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes. Cavieres JD; Ellory JC J Physiol; 1977 Sep; 271(1):289-318. PubMed ID: 144181 [TBL] [Abstract][Full Text] [Related]
62. Decreased erythrocyte Na+,K(+)-ATPase activity associated with cellular potassium loss in extremely low birth weight infants with nonoliguric hyperkalemia. Stefano JL; Norman ME; Morales MC; Goplerud JM; Mishra OP; Delivoria-Papadopoulos M J Pediatr; 1993 Feb; 122(2):276-84. PubMed ID: 8381483 [TBL] [Abstract][Full Text] [Related]
63. Abnormal erythrocyte Na, K-ATPase activity in a northeastern Thai population. Tosukhowong P; Chotikasatit C; Tungsanga K; Sriboonlue P; Prasongwattana V; Pansin P; Sitprija V Southeast Asian J Trop Med Public Health; 1992 Sep; 23(3):526-30. PubMed ID: 1336901 [TBL] [Abstract][Full Text] [Related]
64. Red blood cell Na+,K+-ATPase in men with newly diagnosed or previously treated essential hypertension. Ringel RE; Hamlyn JM; Hamilton BP; Pinkas GA; Chalew SA; Berman MA Hypertension; 1987 May; 9(5):437-43. PubMed ID: 3032788 [TBL] [Abstract][Full Text] [Related]
65. Hypokalemia, high erythrocyte Na+ and low erythrocyte Na,K-ATPase in relatives of patients dying from sudden unexplained death syndrome in north-east Thailand and in survivors from near-fatal attacks. Tosukhowong P; Chotigasatit C; Tungsanga K; Sriboonlue P; Pansin P; Sitprija V Am J Nephrol; 1996; 16(5):369-74. PubMed ID: 8886172 [TBL] [Abstract][Full Text] [Related]
66. Peripheral effects of thyroid hormones: alteration of intracellular Na-concentration, ouabain-sensitive Na-transport, and Na-Li countertransport in human red blood cells. Sütterlin U; Gless KH; Schaz K; Hüfner M; Schütz V; Hunstein W Klin Wochenschr; 1984 Jun; 62(12):598-601. PubMed ID: 6090760 [TBL] [Abstract][Full Text] [Related]
67. Erythrocyte ouabain binding and intracellular Na+ in normotensive obese women and obese women receiving medication for hypertension. Webster DP; Van Winkle LJ; Karrat JJ Biochem Med; 1984 Oct; 32(2):232-41. PubMed ID: 6095820 [TBL] [Abstract][Full Text] [Related]
68. Erythrocyte Na+-K+ ATPase activity in childhood: regulation by genetic factors independent of body weight. Mazelis AG; Larson S; Ginsberg-Fellner F Int J Obes; 1987; 11(6):561-70. PubMed ID: 2831162 [TBL] [Abstract][Full Text] [Related]
69. Na-K-adenosine triphosphatase and cation content in the erythrocyte in essential hypertension. Rahman M; Koh H; Primera MI; Del Greco F; Quintanilla AP J Lab Clin Med; 1986 Apr; 107(4):337-41. PubMed ID: 3007645 [TBL] [Abstract][Full Text] [Related]
70. Relationship of red blood cell ion transport alterations and serum lipid abnormalities in Lyon genetically hypertensive rats. Zicha J; Dobesová Z; Kunes J; Vincent M Can J Physiol Pharmacol; 1997 Sep; 75(9):1123-8. PubMed ID: 9365824 [TBL] [Abstract][Full Text] [Related]
71. Human and dog erythrocytes: relationship between cellular ATP levels, ATP consumption and potassium concentrations. Miseta A; Somoskeoy S; Galambos C; Kellermayer M; Wheatley DN; Cameron IL Physiol Chem Phys Med NMR; 1992; 24(1):11-20. PubMed ID: 1317586 [TBL] [Abstract][Full Text] [Related]
72. [Na+, K+-ATPase activity in erythrocytes after the effect of laser radiation]. Moroz AM Ukr Biokhim Zh (1978); 1983; 55(6):674-6. PubMed ID: 6318415 [TBL] [Abstract][Full Text] [Related]
73. Reduction of erythrocyte (Na(+)-K+) ATPase activities in non-insulin-dependent diabetic patients with hyperkalemia. Mimura M; Makino H; Kanatsuka A; Yoshida S Metabolism; 1992 Apr; 41(4):426-30. PubMed ID: 1313528 [TBL] [Abstract][Full Text] [Related]
74. Effect of cadmium on transmembrane Na+ and K+ transport systems in human erythrocytes. Lijnen P; Staessen J; Fagard R; Amery A Br J Ind Med; 1991 Jun; 48(6):392-8. PubMed ID: 1648375 [TBL] [Abstract][Full Text] [Related]
75. Erythrocyte cation transport in obesity, hypertension, and during antihypertensive drug therapy. Miilunpalo S; Saarinen R; Marniemi J; Lehtonen A Clin Physiol Biochem; 1989; 7(3-4):176-83. PubMed ID: 2572370 [TBL] [Abstract][Full Text] [Related]
76. Sodium transport in red blood cells from dialyzed uremic patients. Corry DB; Tuck ML; Brickman AS; Yanagawa N; Lee DB Kidney Int; 1986 Jun; 29(6):1197-202. PubMed ID: 3018347 [TBL] [Abstract][Full Text] [Related]
77. Na-K pump activity in erythrocytes of patients with endogenous and exogenous glucocorticoid excess. Wambach G; Schmülling V; Kaufmann W Cardiology; 1985; 72 Suppl 1():95-8. PubMed ID: 2996769 [TBL] [Abstract][Full Text] [Related]
78. Two different types of ATP-dependent anion coupled Na transport are mediated by the human red blood cell and Na/K pump. Marin R; Hoffman JF Prog Clin Biol Res; 1988; 268A():539-44. PubMed ID: 2843899 [No Abstract] [Full Text] [Related]
79. Erythrocyte Na/K-ATPase is increased in subjects with subclinical hypothyroidism. Nicolini G; Balzan S; Colzani R; Scarlattini M; Taddei MC; Iervasi G Clin Endocrinol (Oxf); 2004 Jun; 60(6):705-10. PubMed ID: 15163334 [TBL] [Abstract][Full Text] [Related]
80. Abnormalities of erythrocyte sodium transport systems in Bartter's syndrome. Sechi LA; Melis A; Bartoli E Am J Nephrol; 1992; 12(3):137-43. PubMed ID: 1329511 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]