These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 29937951)

  • 1. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.
    Liu B; Tian B; Yang X; Li M; Yang J; Li D; Oh KW
    Biomicrofluidics; 2018 May; 12(3):034111. PubMed ID: 29937951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Concentration Gradients Tunable Generator with Adjustable Position of the Acoustically Oscillating Bubbles.
    Liu B; Ma Z; Yang J; Gao G; Liu H
    Micromachines (Basel); 2020 Aug; 11(9):. PubMed ID: 32878158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Versatile acoustic manipulation of micro-objects using mode-switchable oscillating bubbles: transportation, trapping, rotation, and revolution.
    Zhang W; Song B; Bai X; Jia L; Song L; Guo J; Feng L
    Lab Chip; 2021 Dec; 21(24):4760-4771. PubMed ID: 34632476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of biological objects using acoustic bubbles: a review.
    Chen Y; Lee S
    Integr Comp Biol; 2014 Dec; 54(6):959-68. PubMed ID: 24961435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustofluidic relay: sequential trapping and transporting of microparticles via acoustically excited oscillating bubbles.
    Xie Y; Ahmed D; Lapsley MI; Lu M; Li S; Huang TJ
    J Lab Autom; 2014 Apr; 19(2):137-43. PubMed ID: 23592570
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Air trap and removal on a pressure driven PDMS-based microfluidic device.
    Xu F; Ma L; Fan Y
    Rev Sci Instrum; 2024 May; 95(5):. PubMed ID: 38739426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Micro air bubble manipulation by electrowetting on dielectric (EWOD): transporting, splitting, merging and eliminating of bubbles.
    Zhao Y; Cho SK
    Lab Chip; 2007 Feb; 7(2):273-80. PubMed ID: 17268631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise micro-particle and bubble manipulation by tunable ultrasonic bottle beams.
    Zhou Q; Li M; Fu C; Ren X; Xu Z; Liu X
    Ultrason Sonochem; 2021 Jul; 75():105602. PubMed ID: 34052721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation.
    Angelsky OV; Bekshaev AY; Maksimyak PP; Maksimyak AP; Hanson SG; Kontush SM
    Opt Express; 2017 Mar; 25(5):5232-5243. PubMed ID: 28380787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The dynamics of a non-equilibrium bubble near bio-materials.
    Ohl SW; Klaseboer E; Khoo BC
    Phys Med Biol; 2009 Oct; 54(20):6313-36. PubMed ID: 19809103
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the bubble transport mechanism in an acoustic standing wave field.
    Xi X; Cegla FB; Lowe M; Thiemann A; Nowak T; Mettin R; Holsteyns F; Lippert A
    Ultrasonics; 2011 Dec; 51(8):1014-25. PubMed ID: 21719064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microfluidics-based on-chip impinger for airborne particle collection.
    Mirzaee I; Song M; Charmchi M; Sun H
    Lab Chip; 2016 Jun; 16(12):2254-64. PubMed ID: 27185303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable microfluidic standing air bubbles and its application in acoustic microstreaming.
    Liu J; Li B; Zhu T; Zhou Y; Li S; Guo S; Li T
    Biomicrofluidics; 2019 May; 13(3):034114. PubMed ID: 31186823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Massively Multiplexed Submicron Particle Patterning in Acoustically Driven Oscillating Nanocavities.
    Tayebi M; O'Rorke R; Wong HC; Low HY; Han J; Collins DJ; Ai Y
    Small; 2020 Apr; 16(17):e2000462. PubMed ID: 32196142
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of contrast agent destruction.
    Chomas JE; Dayton P; Allen J; Morgan K; Ferrara KW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Jan; 48(1):232-48. PubMed ID: 11367791
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micropropulsion by an acoustic bubble for navigating microfluidic spaces.
    Feng J; Yuan J; Cho SK
    Lab Chip; 2015 Mar; 15(6):1554-62. PubMed ID: 25650274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap.
    Sung JH; Shuler ML
    Biomed Microdevices; 2009 Aug; 11(4):731-8. PubMed ID: 19212816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.
    Kang ST; Huang YL; Yeh CK
    Ultrasound Med Biol; 2014 Mar; 40(3):551-61. PubMed ID: 24433748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Propulsion of Two Contacting Bubbles Due to the Radiation Interaction Force.
    Doinikov AA; Micol T; Mauger C; Blanc-Benon P; Inserra C
    Micromachines (Basel); 2023 Aug; 14(8):. PubMed ID: 37630151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-speed imaging of ultrasound driven cavitation bubbles in blind and through holes.
    Kauer M; Belova-Magri V; Cairós C; Linka G; Mettin R
    Ultrason Sonochem; 2018 Nov; 48():39-50. PubMed ID: 30080564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.