These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. TESS: an R package for efficiently simulating phylogenetic trees and performing Bayesian inference of lineage diversification rates. Höhna S; May MR; Moore BR Bioinformatics; 2016 Mar; 32(5):789-91. PubMed ID: 26543171 [TBL] [Abstract][Full Text] [Related]
3. Simulating trees with a fixed number of extant species. Stadler T Syst Biol; 2011 Oct; 60(5):676-84. PubMed ID: 21482552 [TBL] [Abstract][Full Text] [Related]
4. Fast simulation of reconstructed phylogenies under global time-dependent birth-death processes. Höhna S Bioinformatics; 2013 Jun; 29(11):1367-74. PubMed ID: 23543414 [TBL] [Abstract][Full Text] [Related]
5. Properties of phylogenetic trees generated by Yule-type speciation models. Steel M; McKenzie A Math Biosci; 2001 Mar; 170(1):91-112. PubMed ID: 11259805 [TBL] [Abstract][Full Text] [Related]
6. Stochastic properties of generalised Yule models, with biodiversity applications. Gernhard T; Hartmann K; Steel M J Math Biol; 2008 Nov; 57(5):713-35. PubMed ID: 18509650 [TBL] [Abstract][Full Text] [Related]
7. CENTRAL MOMENTS AND PROBABILITY DISTRIBUTION OF COLLESS'S COEFFICIENT OF TREE IMBALANCE. Rogers JS Evolution; 1994 Dec; 48(6):2026-2036. PubMed ID: 28565170 [TBL] [Abstract][Full Text] [Related]
8. On the distribution of interspecies correlation for Markov models of character evolution on Yule trees. Mulder WH; Crawford FW J Theor Biol; 2015 Jan; 364():275-83. PubMed ID: 25240905 [TBL] [Abstract][Full Text] [Related]
9. Age-dependent speciation can explain the shape of empirical phylogenies. Hagen O; Hartmann K; Steel M; Stadler T Syst Biol; 2015 May; 64(3):432-40. PubMed ID: 25575504 [TBL] [Abstract][Full Text] [Related]
10. A General and Efficient Algorithm for the Likelihood of Diversification and Discrete-Trait Evolutionary Models. Louca S; Pennell MW Syst Biol; 2020 May; 69(3):545-556. PubMed ID: 31432088 [TBL] [Abstract][Full Text] [Related]
11. Simulating trees with millions of species. Louca S Bioinformatics; 2020 May; 36(9):2907-2908. PubMed ID: 31950998 [TBL] [Abstract][Full Text] [Related]
12. Probability Distribution of Tree Age for the Simple Birth-Death Process, with Applications to Distributions of Number of Ancestral Lineages and Divergence Times for Pairs of Taxa in a Yule Tree. Mulder WH Bull Math Biol; 2023 Sep; 85(10):94. PubMed ID: 37658245 [TBL] [Abstract][Full Text] [Related]
13. Sampling trees from evolutionary models. Hartmann K; Wong D; Stadler T Syst Biol; 2010 Jul; 59(4):465-76. PubMed ID: 20547782 [TBL] [Abstract][Full Text] [Related]
14. New analytic results for speciation times in neutral models. Gernhard T Bull Math Biol; 2008 May; 70(4):1082-97. PubMed ID: 18172736 [TBL] [Abstract][Full Text] [Related]
15. treeman: an R package for efficient and intuitive manipulation of phylogenetic trees. Bennett DJ; Sutton MD; Turvey ST BMC Res Notes; 2017 Jan; 10(1):30. PubMed ID: 28061884 [TBL] [Abstract][Full Text] [Related]
16. The fossilized birth-death model for the analysis of stratigraphic range data under different speciation modes. Stadler T; Gavryushkina A; Warnock RCM; Drummond AJ; Heath TA J Theor Biol; 2018 Jun; 447():41-55. PubMed ID: 29550451 [TBL] [Abstract][Full Text] [Related]
17. The Shape of Phylogenies Under Phase-Type Distributed Times to Speciation and Extinction. Soewongsono AC; Holland BR; O'Reilly MM Bull Math Biol; 2022 Sep; 84(10):118. PubMed ID: 36103093 [TBL] [Abstract][Full Text] [Related]