These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 29938204)

  • 1. The Induction of Bone Formation: The Translation Enigma.
    Klar RM
    Front Bioeng Biotechnol; 2018; 6():74. PubMed ID: 29938204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Re-evaluating the induction of bone formation in primates.
    Ripamonti U; Duarte R; Ferretti C
    Biomaterials; 2014 Nov; 35(35):9407-22. PubMed ID: 25155544
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of 3D Printing Technology in Bone Tissue Engineering: A Review.
    Feng Y; Zhu S; Mei D; Li J; Zhang J; Yang S; Guan S
    Curr Drug Deliv; 2021; 18(7):847-861. PubMed ID: 33191886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Current state of fabrication technologies and materials for bone tissue engineering.
    Wubneh A; Tsekoura EK; Ayranci C; Uludağ H
    Acta Biomater; 2018 Oct; 80():1-30. PubMed ID: 30248515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Preclinical Models for the Testing of Bone Tissue-Engineered Constructs.
    Zeiter S; Koschitzki K; Alini M; Jakob F; Rudert M; Herrmann M
    Tissue Eng Part C Methods; 2020 Feb; 26(2):107-117. PubMed ID: 31808374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review.
    de Kanter AJ; Jongsma KR; Verhaar MC; Bredenoord AL
    Tissue Eng Part B Rev; 2023 Apr; 29(2):167-187. PubMed ID: 36112697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Animal models for bone tissue engineering and modelling disease.
    McGovern JA; Griffin M; Hutmacher DW
    Dis Model Mech; 2018 Apr; 11(4):. PubMed ID: 29685995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ethical implications of regenerative medicine in orthopedics: an empirical study with surgeons and scientists in the field.
    Niemansburg SL; van Delden JJ; Oner FC; Dhert WJ; Bredenoord AL
    Spine J; 2014 Jun; 14(6):1029-35. PubMed ID: 24184644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomaterial-based 3D bioprinting strategy for orthopedic tissue engineering.
    Chae S; Cho DW
    Acta Biomater; 2023 Jan; 156():4-20. PubMed ID: 35963520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tissue-Engineered Solutions in Plastic and Reconstructive Surgery: Principles and Practice.
    Al-Himdani S; Jessop ZM; Al-Sabah A; Combellack E; Ibrahim A; Doak SH; Hart AM; Archer CW; Thornton CA; Whitaker IS
    Front Surg; 2017; 4():4. PubMed ID: 28280722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone tissue engineering and regeneration: from discovery to the clinic--an overview.
    O'Keefe RJ; Mao J
    Tissue Eng Part B Rev; 2011 Dec; 17(6):389-92. PubMed ID: 21902614
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D bioprinting of cartilaginous templates for large bone defect healing.
    Pitacco P; Sadowska JM; O'Brien FJ; Kelly DJ
    Acta Biomater; 2023 Jan; 156():61-74. PubMed ID: 35907556
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Osteogenic Competence and Potency of the Bone Induction Principle: Inductive Substrates That Initiate "Bone: Formation by Autoinduction".
    Ripamonti U; Duarte R; Ferretti C; Reddi AH
    J Craniofac Surg; 2022 May; 33(3):971-984. PubMed ID: 35727651
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of bone marrow stromal cells (bone marrow-derived multipotent mesenchymal stromal cells) for alveolar bone tissue engineering: basic science to clinical translation.
    Kagami H; Agata H; Inoue M; Asahina I; Tojo A; Yamashita N; Imai K
    Tissue Eng Part B Rev; 2014 Jun; 20(3):229-32. PubMed ID: 24494719
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofabrication of small diameter tissue-engineered vascular grafts.
    Weekes A; Bartnikowski N; Pinto N; Jenkins J; Meinert C; Klein TJ
    Acta Biomater; 2022 Jan; 138():92-111. PubMed ID: 34781026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transforming growth factor-beta isoforms and the induction of bone formation: implications for reconstructive craniofacial surgery.
    Ripamonti U; Ferretti C; Teare J; Blann L
    J Craniofac Surg; 2009 Sep; 20(5):1544-55. PubMed ID: 19816294
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biological and biophysical principles in extracorporal bone tissue engineering. Part I.
    Meyer U; Joos U; Wiesmann HP
    Int J Oral Maxillofac Surg; 2004 Jun; 33(4):325-32. PubMed ID: 15145032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.