These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 29938256)

  • 1. Influence of the Ge distribution on the first order magnetic transition of the MnFe(P,Ge) magnetocaloric material.
    Zhang ZL; Liu DM; Xiao WQ; Li H; Wang SB; Liang YT; Zhang HG; Li SL; Fu JJ; Yue M
    Phys Chem Chem Phys; 2018 Jul; 20(26):18117-18126. PubMed ID: 29938256
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Critical dependence of magnetostructural coupling and magnetocaloric effect on particle size in Mn-Fe-Ni-Ge compounds.
    Wu R; Shen F; Hu F; Wang J; Bao L; Zhang L; Liu Y; Zhao Y; Liang F; Zuo W; Sun J; Shen B
    Sci Rep; 2016 Feb; 6():20993. PubMed ID: 26883719
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning structural instability toward enhanced magnetocaloric effect around room temperature in MnCo(1-x)Zn(x)Ge.
    Choudhury D; Suzuki T; Tokura Y; Taguchi Y
    Sci Rep; 2014 Dec; 4():7544. PubMed ID: 25519919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic relaxation dynamics driven by the first-order character of magnetocaloric La(Fe,Mn,Si)13.
    Lovell E; Bratko M; Caplin AD; Barcza A; Katter M; Ghivelder L; Cohen LF
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of short range ferromagnetic interactions and magnetocaloric effect in cobalt substituted Gd
    Uthaman B; Manju P; Thomas S; Jaiswal Nagar D; Suresh KG; Varma MR
    Phys Chem Chem Phys; 2017 May; 19(19):12282-12295. PubMed ID: 28451661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Large magnetocaloric entropy change at room temperature in soft ferromagnetic manganites.
    Bouzidi S; Gdaiem MA; Dhahri J; Hlil EK
    RSC Adv; 2018 Dec; 9(1):65-76. PubMed ID: 35521566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural, magnetic, magnetocaloric behavior and magneto-transport, electrical polarization study in 3d based bulk and nano-crystalline multiferroic double perovskite Dy
    Chatterjee S; Das I
    J Phys Condens Matter; 2024 Jun; 36(38):. PubMed ID: 38876090
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selecting optimal R
    Herrero A; Aseguinolaza IR; Oleaga A; Garcia-Adeva AJ; Apiñaniz E; Garshev AV; Yapaskurt VO; Morozkin AV
    Dalton Trans; 2023 May; 52(17):5780-5797. PubMed ID: 37039014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Large Low-Field Reversible Magnetocaloric Effect in Itinerant-Electron Hf
    Song Z; Li Z; Yang B; Yan H; Esling C; Zhao X; Zuo L
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large low field magnetocaloric effect in first-order phase transition compound TlFe
    Mao Q; Yang J; Wang H; Khan R; Du J; Zhou Y; Xu B; Chen Q; Fang M
    Sci Rep; 2016 Sep; 6():34235. PubMed ID: 27681203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Taming the first-order transition in giant magnetocaloric materials.
    Guillou F; Porcari G; Yibole H; van Dijk N; Brück E
    Adv Mater; 2014 May; 26(17):2671-5, 2615. PubMed ID: 24677518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multicaloric cooling cycle that exploits thermal hysteresis.
    Gottschall T; Gràcia-Condal A; Fries M; Taubel A; Pfeuffer L; Mañosa L; Planes A; Skokov KP; Gutfleisch O
    Nat Mater; 2018 Oct; 17(10):929-934. PubMed ID: 30202111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Magnetocaloric effect and critical behavior in Pr0.5Sr0.5MnO3: an analysis of the validity of the Maxwell relation and the nature of the phase transitions.
    Caballero-Flores R; Bingham NS; Phan MH; Torija MA; Leighton C; Franco V; Conde A; Phan TL; Yu SC; Srikanth H
    J Phys Condens Matter; 2014 Jul; 26(28):286001. PubMed ID: 24945593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Driving magnetostructural transitions in layered intermetallic compounds.
    Wang JL; Caron L; Campbell SJ; Kennedy SJ; Hofmann M; Cheng ZX; Din MF; Studer AJ; Brück E; Dou SX
    Phys Rev Lett; 2013 May; 110(21):217211. PubMed ID: 23745927
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuneable Giant Magnetocaloric Effect in (Mn,Fe)₂(P,Si) Materials by Co-B and Ni-B Co-Doping.
    Thang NV; Dijk NHV; Brück E
    Materials (Basel); 2016 Dec; 10(1):. PubMed ID: 28772373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic couplings and magnetocaloric effect in the GdTX (T=Sc, Ti, Co, Fe; X=Si, Ge) compounds.
    García DJ; Vildosola V; Cornaglia PS
    J Phys Condens Matter; 2020 Jul; 32(28):285803. PubMed ID: 32155597
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, magnetic, and magnetocaloric properties of R
    Shinde KP; Lee EJ; Manawan M; Lee A; Park SY; Jo Y; Ku K; Kim JM; Park JS
    Sci Rep; 2021 Oct; 11(1):20206. PubMed ID: 34642433
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural, magnetic, magnetocaloric and specific heat investigations on Mn doped PrCrO
    Kumar S; Coondoo I; Vasundhara M; Kumar S; Kholkin AL; Panwar N
    J Phys Condens Matter; 2017 May; 29(19):195802. PubMed ID: 28288005
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mastering hysteresis in magnetocaloric materials.
    Gutfleisch O; Gottschall T; Fries M; Benke D; Radulov I; Skokov KP; Wende H; Gruner M; Acet M; Entel P; Farle M
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2074):. PubMed ID: 27402928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disorder influenced magnetic phase transition in the Ce(Fe 0.9 Ru 0.1)2 alloy.
    Chattopadhyay MK; Roy SB
    J Phys Condens Matter; 2010 Jun; 22(23):236002. PubMed ID: 21393774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.