These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 29938263)

  • 1. On the measurement of relaxation times of acoustic vibrations in metal nanowires.
    Devkota T; Chakraborty D; Yu K; Beane G; Sader JE; Hartland GV
    Phys Chem Chem Phys; 2018 Jul; 20(26):17687-17693. PubMed ID: 29938263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Damping of the acoustic vibrations of a suspended gold nanowire in air and water environments.
    Major TA; Crut A; Gao B; Lo SS; Del Fatti N; Vallée F; Hartland GV
    Phys Chem Chem Phys; 2013 Mar; 15(12):4169-76. PubMed ID: 23187958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Damping of acoustic vibrations of immobilized single gold nanorods in different environments.
    Yu K; Zijlstra P; Sader JE; Xu QH; Orrit M
    Nano Lett; 2013 Jun; 13(6):2710-6. PubMed ID: 23638918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compressible Viscoelastic Liquid Effects Generated by the Breathing Modes of Isolated Metal Nanowires.
    Yu K; Major TA; Chakraborty D; Devadas MS; Sader JE; Hartland GV
    Nano Lett; 2015 Jun; 15(6):3964-70. PubMed ID: 25978787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of substrate discontinuities on the propagating surface plasmon polariton modes in gold nanobars.
    Johns P; Yu K; Devadas MS; Li Z; Major TA; Hartland GV
    Nanoscale; 2014 Nov; 6(23):14289-96. PubMed ID: 25321926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Fluid Interactions at Ultrahigh Acoustic Vibration Frequencies Studied by Femtosecond Time-Resolved Microscopy.
    Yu K; Yang Y; Wang J; Hartland GV; Wang GP
    ACS Nano; 2021 Jan; 15(1):1833-1840. PubMed ID: 33448792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Making waves: Radiation damping in metallic nanostructures.
    Devkota T; Brown BS; Beane G; Yu K; Hartland GV
    J Chem Phys; 2019 Aug; 151(8):080901. PubMed ID: 31470703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mode specific dynamics for the acoustic vibrations of a gold nanoplate.
    Wright C; Hartland GV
    Photoacoustics; 2023 Apr; 30():100476. PubMed ID: 37007858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping.
    Yi C; Su MN; Dongare PD; Chakraborty D; Cai YY; Marolf DM; Kress RN; Ostovar B; Tauzin LJ; Wen F; Chang WS; Jones MR; Sader JE; Halas NJ; Link S
    Nano Lett; 2018 Jun; 18(6):3494-3501. PubMed ID: 29715035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing silver deposition on single gold nanorods by their acoustic vibrations.
    Yu K; Sader JE; Zijlstra P; Hong M; Xu QH; Orrit M
    Nano Lett; 2014 Feb; 14(2):915-22. PubMed ID: 24422602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatiotemporal Imaging of the Acoustic Field Emitted by a Single Copper Nanowire.
    Jean C; Belliard L; Cornelius TW; Thomas O; Pennec Y; Cassinelli M; Toimil-Molares ME; Perrin B
    Nano Lett; 2016 Oct; 16(10):6592-6598. PubMed ID: 27657670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge carrier trapping and acoustic phonon modes in single CdTe nanowires.
    Lo SS; Major TA; Petchsang N; Huang L; Kuno MK; Hartland GV
    ACS Nano; 2012 Jun; 6(6):5274-82. PubMed ID: 22559050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Spatial Variations in the Dissipation and Transport of Thermal Energy within Individual Silicon Nanowires Using Ultrafast Microscopy.
    Cating EE; Pinion CW; Van Goethem EM; Gabriel MM; Cahoon JF; Papanikolas JM
    Nano Lett; 2016 Jan; 16(1):434-9. PubMed ID: 26629610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damping of acoustic vibrations in gold nanoparticles.
    Pelton M; Sader JE; Burgin J; Liu M; Guyot-Sionnest P; Gosztola D
    Nat Nanotechnol; 2009 Aug; 4(8):492-5. PubMed ID: 19662009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical vibrations of pendant liquid droplets.
    Temperton RH; Smith MI; Sharp JS
    Eur Phys J E Soft Matter; 2015 Jul; 38(7):79. PubMed ID: 26189195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical measurement of the picosecond fluid mechanics in simple liquids generated by vibrating nanoparticles: a review.
    Uthe B; Sader JE; Pelton M
    Rep Prog Phys; 2022 Oct; 85(10):. PubMed ID: 36049471
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling to light, and transport and dissipation of energy in silver nanowires.
    Staleva H; Skrabalak SE; Carey CR; Kosel T; Xia Y; Hartland GV
    Phys Chem Chem Phys; 2009 Jul; 11(28):5889-96. PubMed ID: 19588009
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulating light scattering from supported plasmonic nanowires.
    Miljković VD; Shegai T; Johansson P; Käll M
    Opt Express; 2012 May; 20(10):10816-26. PubMed ID: 22565705
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photonic nanowires: from subwavelength waveguides to optical sensors.
    Guo X; Ying Y; Tong L
    Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Micro-wilhelmy and related liquid property measurements using constant-diameter nanoneedle-tipped atomic force microscope probes.
    Yazdanpanah MM; Hosseini M; Pabba S; Berry SM; Dobrokhotov VV; Safir A; Keynton RS; Cohn RW
    Langmuir; 2008 Dec; 24(23):13753-64. PubMed ID: 18986184
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.