BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 29938366)

  • 1. Quorum sensing in rhizobia isolated from the spores of the mycorrhizal symbiont Rhizophagus intraradices.
    Palla M; Battini F; Cristani C; Giovannetti M; Squartini A; Agnolucci M
    Mycorrhiza; 2018 Nov; 28(8):773-778. PubMed ID: 29938366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctionality and diversity of culturable bacterial communities strictly associated with spores of the plant beneficial symbiont Rhizophagus intraradices.
    Battini F; Cristani C; Giovannetti M; Agnolucci M
    Microbiol Res; 2016 Feb; 183():68-79. PubMed ID: 26805620
    [TBL] [Abstract][Full Text] [Related]  

  • 3.
    Zhou S; Zhang A; Yin H; Chu W
    Front Cell Infect Microbiol; 2016; 6():184. PubMed ID: 28018866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of Diverse N-Acyl Homoserine Lactone Signalling Molecules Among Bacteria Associated with Rice Rhizosphere.
    Viswanath G; Sekar J; Ramalingam PV
    Curr Microbiol; 2020 Nov; 77(11):3480-3491. PubMed ID: 32918570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia.
    Nievas F; Bogino P; Sorroche F; Giordano W
    Sensors (Basel); 2012; 12(3):2851-73. PubMed ID: 22736981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-acylhomoserine lactone-degrading bacteria isolated from hatchery bivalve larval cultures.
    Torres M; Romero M; Prado S; Dubert J; Tahrioui A; Otero A; Llamas I
    Microbiol Res; 2013 Nov; 168(9):547-54. PubMed ID: 23743010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of N-acyl homoserine lactone-degrading bacteria isolated from rainbow trout (Oncorhynchus mykiss).
    Torabi Delshad S; Soltanian S; Sharifiyazdi H; Haghkhah M; Bossier P
    J Appl Microbiol; 2018 Aug; 125(2):356-369. PubMed ID: 29694709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities.
    Romero M; Martin-Cuadrado AB; Roca-Rivada A; Cabello AM; Otero A
    FEMS Microbiol Ecol; 2011 Feb; 75(2):205-17. PubMed ID: 21155853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules.
    Nievas F; Vilchez L; Giordano W; Bogino P
    Antonie Van Leeuwenhoek; 2017 Jul; 110(7):891-902. PubMed ID: 28357693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quorum Sensing versus Quenching Bacterial Isolates Obtained from MBR Plants Treating Leachates from Municipal Solid Waste.
    Soler A; Arregui L; Arroyo M; Mendoza JA; Muras A; Álvarez C; García-Vera C; Marquina D; Santos A; Serrano S
    Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29783658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of N-acyl homoserine lactone quorum sensing signal molecules by forest root-associated fungi.
    Uroz S; Heinonsalo J
    FEMS Microbiol Ecol; 2008 Aug; 65(2):271-8. PubMed ID: 18400006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of Whole-Cell Bioassays for Screening Quorum Signaling, Quorum Interference, and Biofilm Dispersion.
    Thornhill SG; McLean RJC
    Methods Mol Biol; 2018; 1673():3-24. PubMed ID: 29130160
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Extracellular lactonase-mediated quorum quenching by a novel Bacillus velezensis.
    Ayyappan SV; Bhaskaran K
    FEMS Microbiol Lett; 2022 Oct; 369(1):. PubMed ID: 36195331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioassays of quorum sensing compounds using Agrobacterium tumefaciens and Chromobacterium violaceum.
    Chu W; Vattem DA; Maitin V; Barnes MB; McLean RJ
    Methods Mol Biol; 2011; 692():3-19. PubMed ID: 21031300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria.
    Pérez-Montaño F; Jiménez-Guerrero I; Contreras Sánchez-Matamoros R; López-Baena FJ; Ollero FJ; Rodríguez-Carvajal MA; Bellogín RA; Espuny MR
    Res Microbiol; 2013 Sep; 164(7):749-60. PubMed ID: 23583723
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for direct isolation of N-acyl-L-homoserine lactone mediated biofilm-forming rhizobacteria from roots.
    Begum JF; Tamilarasi M; Pushpakanth P; Balachandar D
    J Microbiol Methods; 2019 Jan; 156():34-39. PubMed ID: 30471310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and -independent fashions in Rhizobium etli.
    Zheng H; Mao Y; Zhu Q; Ling J; Zhang N; Naseer N; Zhong Z; Zhu J
    J Bacteriol; 2015 May; 197(9):1573-81. PubMed ID: 25691531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diversity and quorum-sensing signal production of Proteobacteria associated with marine sponges.
    Mohamed NM; Cicirelli EM; Kan J; Chen F; Fuqua C; Hill RT
    Environ Microbiol; 2008 Jan; 10(1):75-86. PubMed ID: 18211268
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules.
    Czajkowski R; Jafra S
    Acta Biochim Pol; 2009; 56(1):1-16. PubMed ID: 19287806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quorum Quenching of Nitrobacter winogradskyi Suggests that Quorum Sensing Regulates Fluxes of Nitrogen Oxide(s) during Nitrification.
    Mellbye BL; Giguere AT; Bottomley PJ; Sayavedra-Soto LA
    mBio; 2016 Oct; 7(5):. PubMed ID: 27795404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.