BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 2993849)

  • 1. The accessibility of phage MS2 RNA to structure specific nucleases in various conditions.
    Grechko VV; Tymokhina GI; Aleshkina LA; Kalashnikova JI; Majev SP; Vassilenko SK
    Mol Biol Rep; 1985 Apr; 10(3):137-42. PubMed ID: 2993849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Comparison of the conformation of RNA from phage MS2 and 16S rRNA. Accessibility to nucleases S1 and SV specific to secondary structure and thermal stability].
    Grechko VV; Borisova OF; Sakharova NK; Timokhina GI; Kuznetsova NV
    Mol Biol (Mosk); 1987; 21(2):506-14. PubMed ID: 2439895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study of spatial organization of the RNA of phage MSZ using nucleases specific for the secondary structure].
    Grechko VV; Timokhina GI; Aleshkina LA
    Mol Biol (Mosk); 1982; 16(5):1097-108. PubMed ID: 6292701
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study of the secondary and tertiary structure of phage MS2 RNA using nucleases and fluorescent dyes specific for secondary structure].
    Borisova OF; Grechko VV; Aleshkina LA; Kuznetsova NV
    Mol Biol (Mosk); 1984; 18(6):1625-33. PubMed ID: 6097815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. S1 nuclease hydrolysis of single-stranded nucleic acids with partial double-stranded configuration.
    Rushizky GW; Shaternikov VA; Mozejko JH; Sober HA
    Biochemistry; 1975 Sep; 14(19):4221-6. PubMed ID: 1182098
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Comparison of the conformation of RNA from phage MS2 and 16S rRNA. Interaction with dyes specific for the secondary structure of native RNA and RNA subjected to hydrolysis by nuclease S1].
    Borisova OF; Grechko VV; Kuznetsova NV; Sakharova NK; Timokhina GI
    Mol Biol (Mosk); 1987; 21(2):515-28. PubMed ID: 3299045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved procedure for the isolation of a double-strand-specific ribonuclease and its application to structural analysis of various 5S rRNAs and tRNAs.
    Digweed M; Pieler T; Kluwe D; Schuster L; Walker R; Erdmann VA
    Eur J Biochem; 1986 Jan; 154(1):31-9. PubMed ID: 2417836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Double-stranded RNA-dependent RNase activity associated with human immunodeficiency virus type 1 reverse transcriptase.
    Ben-Artzi H; Zeelon E; Gorecki M; Panet A
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):927-31. PubMed ID: 1371014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rescue of the RNA phage genome from RNase III cleavage.
    Klovins J; van Duin J; Olsthoorn RC
    Nucleic Acids Res; 1997 Nov; 25(21):4201-8. PubMed ID: 9336447
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Action of Pennisetum typhoides double-stranded ribonuclease on viral ds RNAs.
    Maran A; Shanmugam G
    Biochem Int; 1985 Oct; 11(4):617-25. PubMed ID: 3910048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of RNA secondary structure on the action of a nucleolar endoribonuclease.
    Eichler DC; Eales SJ
    J Biol Chem; 1983 Aug; 258(16):10049-53. PubMed ID: 6193106
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate structure requirements of the Pac1 ribonuclease from Schizosaccharmyces pombe.
    Rotondo G; Huang JY; Frendewey D
    RNA; 1997 Oct; 3(10):1182-93. PubMed ID: 9326493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degradation of double-stranded RNA by human pancreatic ribonuclease: crucial role of noncatalytic basic amino acid residues.
    Sorrentino S; Naddeo M; Russo A; D'Alessio G
    Biochemistry; 2003 Sep; 42(34):10182-90. PubMed ID: 12939146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Double-stranded RNA specific nuclease from germinating embryos of Pennisetum typhoides.
    Maran A; Kalyanaraman S; Shanmugam G
    Mol Biol Rep; 1984 Dec; 10(2):99-104. PubMed ID: 6527687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How much is secondary structure responsible for resistance of double-stranded RNA to pancreatic ribonuclease A?
    Libonati M; Palmieri M
    Biochim Biophys Acta; 1978 Apr; 518(2):277-89. PubMed ID: 26405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and characterization of a ribonuclease activity specific for double-stranded RNA (RNase D) from Krebs II ascites cells.
    Rech J; Cathala G; Jeanteur P
    J Biol Chem; 1980 Jul; 255(14):6700-6. PubMed ID: 6248530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA segments sensitive to single-strand-specific nucleases are present in chromatin of mitotic cells.
    Juan G; Pan W; Darzynkiewicz Z
    Exp Cell Res; 1996 Sep; 227(2):197-202. PubMed ID: 8831556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and mapping of RNase III cleavage sites in VSV genome RNA.
    Wertz GW; Davis N
    Nucleic Acids Res; 1981 Dec; 9(23):6487-503. PubMed ID: 6275365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double-stranded RNA: the variables controlling its degradation by RNases.
    Yakovlev GI; Sorrentino S; Moiseyev GP; Libonati M
    Nucleic Acids Symp Ser; 1995; (33):106-8. PubMed ID: 8643340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-associated nucleases: location and properties of deoxyribonucleases and ribonucleases in purified frog virus 3.
    Kang HS; McAuslan BR
    J Virol; 1972 Aug; 10(2):202-10. PubMed ID: 4342238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.