These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 29938731)

  • 21. ClusterCAD: a computational platform for type I modular polyketide synthase design.
    Eng CH; Backman TWH; Bailey CB; Magnan C; García Martín H; Katz L; Baldi P; Keasling JD
    Nucleic Acids Res; 2018 Jan; 46(D1):D509-D515. PubMed ID: 29040649
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Module-Based Polyketide Synthase Engineering for
    Nava AA; Roberts J; Haushalter RW; Wang Z; Keasling JD
    ACS Synth Biol; 2023 Nov; 12(11):3148-3155. PubMed ID: 37871264
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering modular polyketide synthases for production of biofuels and industrial chemicals.
    Cai W; Zhang W
    Curr Opin Biotechnol; 2018 Apr; 50():32-38. PubMed ID: 28946011
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational design and assembly of synthetic trimodular polyketide synthases.
    Menzella HG; Carney JR; Santi DV
    Chem Biol; 2007 Feb; 14(2):143-51. PubMed ID: 17317568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polyketide Synthase Modules Redefined.
    Keatinge-Clay AT
    Angew Chem Int Ed Engl; 2017 Apr; 56(17):4658-4660. PubMed ID: 28322495
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PKMiner: a database for exploring type II polyketide synthases.
    Kim J; Yi GS
    BMC Microbiol; 2012 Aug; 12():169. PubMed ID: 22871112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A polylinker approach to reductive loop swaps in modular polyketide synthases.
    Kellenberger L; Galloway IS; Sauter G; Böhm G; Hanefeld U; Cortés J; Staunton J; Leadlay PF
    Chembiochem; 2008 Nov; 9(16):2740-9. PubMed ID: 18937219
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the modularity of megasynthases by rational engineering of a fatty acid synthase Type I.
    Rittner A; Paithankar KS; Drexler DJ; Himmler A; Grininger M
    Protein Sci; 2019 Feb; 28(2):414-428. PubMed ID: 30394635
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution-guided engineering of
    Mabesoone MFJ; Leopold-Messer S; Minas HA; Chepkirui C; Chawengrum P; Reiter S; Meoded RA; Wolf S; Genz F; Magnus N; Piechulla B; Walker AS; Piel J
    Science; 2024 Mar; 383(6689):1312-1317. PubMed ID: 38513027
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Engineering the acyltransferase domain of epothilone polyketide synthase to alter the substrate specificity.
    Wang H; Liang J; Yue Q; Li L; Shi Y; Chen G; Li YZ; Bian X; Zhang Y; Zhao G; Ding X
    Microb Cell Fact; 2021 Apr; 20(1):86. PubMed ID: 33882930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-Directed Mutagenesis of Modular Polyketide Synthase Ketoreductase Domains for Altered Stereochemical Control.
    Drufva EE; Spengler NR; Hix EG; Bailey CB
    Chembiochem; 2021 Apr; 22(7):1122-1150. PubMed ID: 33185924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Engineered biosynthesis of regioselectively modified aromatic polyketides using bimodular polyketide synthases.
    Tang Y; Lee TS; Khosla C
    PLoS Biol; 2004 Feb; 2(2):E31. PubMed ID: 14966533
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Broad substrate specificity of ketoreductases derived from modular polyketide synthases.
    Bali S; O'Hare HM; Weissman KJ
    Chembiochem; 2006 Mar; 7(3):478-84. PubMed ID: 16453348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering the Substrate Specificity of a Modular Polyketide Synthase for Installation of Consecutive Non-Natural Extender Units.
    Kalkreuter E; CroweTipton JM; Lowell AN; Sherman DH; Williams GJ
    J Am Chem Soc; 2019 Feb; 141(5):1961-1969. PubMed ID: 30676722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative characterization of the lactimidomycin and iso-migrastatin biosynthetic machineries revealing unusual features for acyltransferase-less type I polyketide synthases and providing an opportunity to engineer new analogues.
    Seo JW; Ma M; Kwong T; Ju J; Lim SK; Jiang H; Lohman JR; Yang C; Cleveland J; Zazopoulos E; Farnet CM; Shen B
    Biochemistry; 2014 Dec; 53(49):7854-65. PubMed ID: 25405956
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluating Ketoreductase Exchanges as a Means of Rationally Altering Polyketide Stereochemistry.
    Annaval T; Paris C; Leadlay PF; Jacob C; Weissman KJ
    Chembiochem; 2015 Jun; 16(9):1357-64. PubMed ID: 25851784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Starter unit flexibility for engineered product synthesis by the nonreducing polyketide synthase PksA.
    Huitt-Roehl CR; Hill EA; Adams MM; Vagstad AL; Li JW; Townsend CA
    ACS Chem Biol; 2015 Jun; 10(6):1443-9. PubMed ID: 25714897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Engineering fungal nonreducing polyketide synthase by heterologous expression and domain swapping.
    Yeh HH; Chang SL; Chiang YM; Bruno KS; Oakley BR; Wu TK; Wang CC
    Org Lett; 2013 Feb; 15(4):756-9. PubMed ID: 23368695
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering of Chimeric Polyketide Synthases Using SYNZIP Docking Domains.
    Klaus M; D'Souza AD; Nivina A; Khosla C; Grininger M
    ACS Chem Biol; 2019 Mar; 14(3):426-433. PubMed ID: 30682239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic engineering to produce polyketide analogues.
    Reeves CD; Rodriguez E
    Methods Enzymol; 2009; 459():295-318. PubMed ID: 19362645
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.