These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 29938763)

  • 1. The cellular and molecular bases of the sponge stem cell systems underlying reproduction, homeostasis and regeneration.
    Funayama N
    Int J Dev Biol; 2018; 62(6-7-8):513-525. PubMed ID: 29938763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The stem cell system in demosponges: insights into the origin of somatic stem cells.
    Funayama N
    Dev Growth Differ; 2010 Jan; 52(1):1-14. PubMed ID: 20078651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells).
    Funayama N
    Dev Genes Evol; 2013 Mar; 223(1-2):23-38. PubMed ID: 23053625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piwi expression in archeocytes and choanocytes in demosponges: insights into the stem cell system in demosponges.
    Funayama N; Nakatsukasa M; Mohri K; Masuda Y; Agata K
    Evol Dev; 2010; 12(3):275-87. PubMed ID: 20565538
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The active stem cell specific expression of sponge Musashi homolog EflMsiA suggests its involvement in maintaining the stem cell state.
    Okamoto K; Nakatsukasa M; Alié A; Masuda Y; Agata K; Funayama N
    Mech Dev; 2012; 129(1-4):24-37. PubMed ID: 22464976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paleoclimate and evolution: emergence of sponges during the neoproterozoic.
    Müller WE; Wang X; Schröder HC
    Prog Mol Subcell Biol; 2009; 47():55-77. PubMed ID: 19198773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscarella lobularis (Homoscleromorpha, Porifera) Regeneration: Epithelial Morphogenesis and Metaplasia.
    Ereskovsky AV; Borisenko IE; Lapébie P; Gazave E; Tokina DB; Borchiellini C
    PLoS One; 2015; 10(8):e0134566. PubMed ID: 26270639
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sewing up the wounds : The epithelial morphogenesis as a central mechanism of calcaronean sponge regeneration.
    Lavrov AI; Bolshakov FV; Tokina DB; Ereskovsky AV
    J Exp Zool B Mol Dev Evol; 2018 Sep; 330(6-7):351-371. PubMed ID: 30421540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stem cell concept in sponges (Porifera): Metazoan traits.
    Müller WE
    Semin Cell Dev Biol; 2006 Aug; 17(4):481-91. PubMed ID: 16807004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges.
    Riesgo A; Farrar N; Windsor PJ; Giribet G; Leys SP
    Mol Biol Evol; 2014 May; 31(5):1102-20. PubMed ID: 24497032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Situ Hybridization to Identify Stem Cells in the Freshwater Sponge Ephydatia fluviatilis.
    Kojima C; Funayama N
    Methods Mol Biol; 2022; 2450():335-346. PubMed ID: 35359316
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transdifferentiation and mesenchymal-to-epithelial transition during regeneration in Demospongiae (Porifera).
    Ereskovsky AV; Tokina DB; Saidov DM; Baghdiguian S; Le Goff E; Lavrov AI
    J Exp Zool B Mol Dev Evol; 2020 Jan; 334(1):37-58. PubMed ID: 31725194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation and Transdifferentiation of Sponge Cells.
    Adamska M
    Results Probl Cell Differ; 2018; 65():229-253. PubMed ID: 30083923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sponges as models to study emergence of complex animals.
    Adamska M
    Curr Opin Genet Dev; 2016 Aug; 39():21-28. PubMed ID: 27318691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Sponge cell reaggregation: mechanisms and dynamics of the process].
    Lavrov AI; Kosevich IA
    Ontogenez; 2014; 45(4):250-71. PubMed ID: 25735148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pluripotency and the origin of animal multicellularity.
    Sogabe S; Hatleberg WL; Kocot KM; Say TE; Stoupin D; Roper KE; Fernandez-Valverde SL; Degnan SM; Degnan BM
    Nature; 2019 Jun; 570(7762):519-522. PubMed ID: 31189954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Think like a sponge: The genetic signal of sensory cells in sponges.
    Mah JL; Leys SP
    Dev Biol; 2017 Nov; 431(1):93-100. PubMed ID: 28647138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The ancestral gene repertoire of animal stem cells.
    Alié A; Hayashi T; Sugimura I; Manuel M; Sugano W; Mano A; Satoh N; Agata K; Funayama N
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):E7093-100. PubMed ID: 26644562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep phylogeny and evolution of sponges (phylum Porifera).
    Wörheide G; Dohrmann M; Erpenbeck D; Larroux C; Maldonado M; Voigt O; Borchiellini C; Lavrov DV
    Adv Mar Biol; 2012; 61():1-78. PubMed ID: 22560777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Whole-Body Regeneration in Sponges: Diversity, Fine Mechanisms, and Future Prospects.
    Ereskovsky A; Borisenko IE; Bolshakov FV; Lavrov AI
    Genes (Basel); 2021 Mar; 12(4):. PubMed ID: 33805549
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.