BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 29938851)

  • 1. Comparison of sample preparation techniques and data analysis for the LC-MS/MS-based identification of proteins in human follicular fluid.
    Lehmann R; Schmidt A; Pastuschek J; Müller MM; Fritzsche A; Dieterle S; Greb RR; Markert UR; Slevogt H
    Am J Reprod Immunol; 2018 Aug; 80(2):e12994. PubMed ID: 29938851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human follicular fluid proteomic and peptidomic composition quantitative studies by SWATH-MS methodology. Applicability of high pH RP-HPLC fractionation.
    Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S
    J Proteomics; 2019 Jan; 191():131-142. PubMed ID: 29530678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development.
    Fu Q; Huang Y; Wang Z; Chen F; Huang D; Lu Y; Liang X; Zhang M
    Int J Mol Sci; 2016 Apr; 17(5):. PubMed ID: 27136540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Versatile Workflow for Cerebrospinal Fluid Proteomic Analysis with Mass Spectrometry: A Matter of Choice between Deep Coverage and Sample Throughput.
    Macron C; Núñez Galindo A; Cominetti O; Dayon L
    Methods Mol Biol; 2019; 2044():129-154. PubMed ID: 31432411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compatibility of Distinct Label-Free Proteomic Workflows in Absolute Quantification of Proteins Linked to the Oocyte Quality in Human Follicular Fluid.
    Lewandowska AE; Fel A; Thiel M; Czaplewska P; Łukaszuk K; Wiśniewski JR; Ołdziej S
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic analysis of the microenvironment of developing oocytes.
    Twigt J; Steegers-Theunissen RP; Bezstarosti K; Demmers JA
    Proteomics; 2012 May; 12(9):1463-71. PubMed ID: 22589193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bottom-Up Proteomics: Advancements in Sample Preparation.
    Duong VA; Lee H
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of 2-D LC and 3-D LC with post- and pre-tryptic-digestion SEC fractionation for proteome analysis of normal human liver tissue.
    Zhang J; Xu X; Gao M; Yang P; Zhang X
    Proteomics; 2007 Feb; 7(4):500-512. PubMed ID: 17309095
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic analysis of human follicular fluid using an alternative bottom-up approach.
    Hanrieder J; Nyakas A; Naessén T; Bergquist J
    J Proteome Res; 2008 Jan; 7(1):443-9. PubMed ID: 18047273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mixed-mode ion exchange-based integrated proteomics technology for fast and deep plasma proteome profiling.
    Xue L; Lin L; Zhou W; Chen W; Tang J; Sun X; Huang P; Tian R
    J Chromatogr A; 2018 Aug; 1564():76-84. PubMed ID: 29935814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.
    Gritsenko MA; Xu Z; Liu T; Smith RD
    Methods Mol Biol; 2016; 1410():237-47. PubMed ID: 26867748
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid and sensitive profiling and quantification of the human cell line proteome by LC-MS/MS without prefractionation.
    Yin X; Liu X; Zhang Y; Yan G; Wang F; Lu H; Shen H; Yang P
    Proteomics; 2014 Sep; 14(17-18):2008-16. PubMed ID: 25044409
    [TBL] [Abstract][Full Text] [Related]  

  • 13. LFQuant: a label-free fast quantitative analysis tool for high-resolution LC-MS/MS proteomics data.
    Zhang W; Zhang J; Xu C; Li N; Liu H; Ma J; Zhu Y; Xie H
    Proteomics; 2012 Dec; 12(23-24):3475-84. PubMed ID: 23081734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics technologies for the global identification and quantification of proteins.
    Brewis IA; Brennan P
    Adv Protein Chem Struct Biol; 2010; 80():1-44. PubMed ID: 21109216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proteomic analysis of human follicular fluid: a new perspective towards understanding folliculogenesis.
    Ambekar AS; Nirujogi RS; Srikanth SM; Chavan S; Kelkar DS; Hinduja I; Zaveri K; Prasad TS; Harsha HC; Pandey A; Mukherjee S
    J Proteomics; 2013 Jul; 87():68-77. PubMed ID: 23707233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface modified capillary electrophoresis combined with in solution isoelectric focusing and MALDI-TOF/TOF MS: a gel-free multidimensional electrophoresis approach for proteomic profiling--exemplified on human follicular fluid.
    Hanrieder J; Zuberovic A; Bergquist J
    J Chromatogr A; 2009 Apr; 1216(17):3621-8. PubMed ID: 19155017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isobaric Labeling-Based LC-MS/MS Strategy for Comprehensive Profiling of Human Pancreatic Tissue Proteome.
    Liu CW; Zhang Q
    Methods Mol Biol; 2018; 1788():215-224. PubMed ID: 28986817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome.
    Wiśniewski JR; Zougman A; Mann M
    J Proteome Res; 2009 Dec; 8(12):5674-8. PubMed ID: 19848406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Qualitative and Quantitative Analysis of Proteome and Peptidome of Human Follicular Fluid Using Multiple Samples from Single Donor with LC-MS and SWATH Methodology.
    Lewandowska AE; Macur K; Czaplewska P; Liss J; Łukaszuk K; Ołdziej S
    J Proteome Res; 2017 Aug; 16(8):3053-3067. PubMed ID: 28658951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Proteome Coverage and Sample Recovery with Enhanced FASP (eFASP) for Quantitative Proteomic Experiments.
    Erde J; Loo RR; Loo JA
    Methods Mol Biol; 2017; 1550():11-18. PubMed ID: 28188519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.