These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 29938916)
1. Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Kirillova A; Kelly C; von Windheim N; Gall K Adv Healthc Mater; 2018 Sep; 7(17):e1800467. PubMed ID: 29938916 [TBL] [Abstract][Full Text] [Related]
2. Reinforcement and Fatigue of a Bioinspired Mineral-Organic Bioresorbable Bone Adhesive. Kirillova A; Nillissen O; Liu S; Kelly C; Gall K Adv Healthc Mater; 2021 Jan; 10(2):e2001058. PubMed ID: 33111508 [TBL] [Abstract][Full Text] [Related]
3. Novel adhesive mineral-organic bone cements based on phosphoserine and magnesium phosphates or oxides. Renner T; Otto P; Kübler AC; Hölscher-Doht S; Gbureck U J Mater Sci Mater Med; 2023 Mar; 34(4):14. PubMed ID: 36964421 [TBL] [Abstract][Full Text] [Related]
4. Multi-objective property optimisation of a phosphoserine-modified calcium phosphate cement for orthopaedic and dental applications using design of experiments methodology. Tzagiollari A; Redmond J; McCarthy HO; Levingstone TJ; Dunne NJ Acta Biomater; 2024 Jan; 174():447-462. PubMed ID: 38000527 [TBL] [Abstract][Full Text] [Related]
5. Reconstruction of the immature craniofacial skeleton with a carbonated calcium phosphate bone cement: interaction with bioresorbable mesh. Losee JE; Karmacharya J; Gannon FH; Slemp AE; Ong G; Hunenko O; Gorden AD; Bartlett SP; Kirschner RE J Craniofac Surg; 2003 Jan; 14(1):117-24. PubMed ID: 12544233 [TBL] [Abstract][Full Text] [Related]
6. Bioactive tetracalcium phosphate/magnesium phosphate composite bone cement for bone repair. Liu J; Liao J; Li Y; Yang Z; Ying Q; Xie Y; Zhou A J Biomater Appl; 2019 Aug; 34(2):239-249. PubMed ID: 31042122 [No Abstract] [Full Text] [Related]
7. Influence of cement compressive strength and porosity on augmentation performance in a model of orthopedic screw pull-out. Pujari-Palmer M; Robo C; Persson C; Procter P; Engqvist H J Mech Behav Biomed Mater; 2018 Jan; 77():624-633. PubMed ID: 29100205 [TBL] [Abstract][Full Text] [Related]
8. Bioresorption behavior of tetracalcium phosphate-derived calcium phosphate cement implanted in femur of rabbits. Tsai CH; Lin RM; Ju CP; Chern Lin JH Biomaterials; 2008 Mar; 29(8):984-93. PubMed ID: 18096221 [TBL] [Abstract][Full Text] [Related]
9. Of the in vivo behavior of calcium phosphate cements and glasses as bone substitutes. Sanzana ES; Navarro M; Macule F; Suso S; Planell JA; Ginebra MP Acta Biomater; 2008 Nov; 4(6):1924-33. PubMed ID: 18539102 [TBL] [Abstract][Full Text] [Related]
10. Overcoming the Dilemma of In Vivo Stable Adhesion and Sustained Degradation by the Molecular Design of Polyurethane Adhesives for Bone Fracture Repair. Li Q; Tang B; Liu X; Chen B; Wang X; Xiao H; Zheng Z Adv Healthc Mater; 2024 Feb; 13(5):e2301870. PubMed ID: 38145973 [TBL] [Abstract][Full Text] [Related]
11. Vertical bone augmentation with granulated brushite cement set in glycolic acid. Mariño FT; Torres J; Tresguerres I; Jerez LB; Cabarcos EL J Biomed Mater Res A; 2007 Apr; 81(1):93-102. PubMed ID: 17109427 [TBL] [Abstract][Full Text] [Related]
12. Mechanical testing and osteointegration of titanium implant with calcium phosphate bone cement and autograft alternatives. Lin DJ; Ju CP; Huang SH; Tien YC; Yin HS; Chen WC; Chern Lin JH J Mech Behav Biomed Mater; 2011 Oct; 4(7):1186-95. PubMed ID: 21783127 [TBL] [Abstract][Full Text] [Related]
13. [Animal implantation with a new type of chitosan microspheres/calcium phosphate cement]. Meng D; Xie QF Beijing Da Xue Xue Bao Yi Xue Ban; 2009 Feb; 41(1):80-5. PubMed ID: 19221571 [TBL] [Abstract][Full Text] [Related]
14. Effect of processing conditions of dicalcium phosphate cements on graft resorption and bone formation. Sheikh Z; Zhang YL; Tamimi F; Barralet J Acta Biomater; 2017 Apr; 53():526-535. PubMed ID: 28213100 [TBL] [Abstract][Full Text] [Related]
15. Osteointegration of PLGA implants with nanostructured or microsized β-TCP particles in a minipig model. Kulkova J; Moritz N; Suokas EO; Strandberg N; Leino KA; Laitio TT; Aro HT J Mech Behav Biomed Mater; 2014 Dec; 40():190-200. PubMed ID: 25241283 [TBL] [Abstract][Full Text] [Related]
16. Polyacrylic acid-reinforced organic-inorganic composite bone adhesives with enhanced mechanical properties and controlled degradability. Zheng P; Deng J; Jiang L; Ni N; Huang X; Zhao Z; Hu X; Cen X; Chen J; Wang R J Mater Chem B; 2024 Aug; 12(34):8321-8334. PubMed ID: 39099557 [TBL] [Abstract][Full Text] [Related]
17. Mechanical evaluation of implanted calcium phosphate cement incorporated with PLGA microparticles. Link DP; van den Dolder J; Jurgens WJ; Wolke JG; Jansen JA Biomaterials; 2006 Oct; 27(28):4941-7. PubMed ID: 16759694 [TBL] [Abstract][Full Text] [Related]
18. Biomechanical assessment of a new adhesive bone cement for otologic surgery. Werning JW; Maniglia AJ; Anderson JM Am J Otol; 1995 May; 16(3):269-76. PubMed ID: 8588618 [TBL] [Abstract][Full Text] [Related]
19. Self-setting bioactive calcium-magnesium phosphate cement with high strength and degradability for bone regeneration. Wu F; Wei J; Guo H; Chen F; Hong H; Liu C Acta Biomater; 2008 Nov; 4(6):1873-84. PubMed ID: 18662897 [TBL] [Abstract][Full Text] [Related]
20. In vivo safety assessment of a bio-inspired bone adhesive. Hulsart-Billström G; Stelzl C; Procter P; Pujari-Palmer M; Insley G; Engqvist H; Larsson S J Mater Sci Mater Med; 2020 Feb; 31(2):24. PubMed ID: 32036502 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]