These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
615 related articles for article (PubMed ID: 29939183)
61. Epigenetic differences between naïve and primed pluripotent stem cells. Takahashi S; Kobayashi S; Hiratani I Cell Mol Life Sci; 2018 Apr; 75(7):1191-1203. PubMed ID: 29134247 [TBL] [Abstract][Full Text] [Related]
62. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Alberio R; Croxall N; Allegrucci C Stem Cells Dev; 2010 Oct; 19(10):1627-36. PubMed ID: 20210627 [TBL] [Abstract][Full Text] [Related]
63. Profiling of naïve and primed human pluripotent stem cells reveals state-associated miRNAs. Dodsworth BT; Hatje K; Rostovskaya M; Flynn R; Meyer CA; Cowley SA Sci Rep; 2020 Jun; 10(1):10542. PubMed ID: 32601281 [TBL] [Abstract][Full Text] [Related]
64. Isolation and expansion of human pluripotent stem cell-derived hepatic progenitor cells by growth factor defined serum-free culture conditions. Fukuda T; Takayama K; Hirata M; Liu YJ; Yanagihara K; Suga M; Mizuguchi H; Furue MK Exp Cell Res; 2017 Mar; 352(2):333-345. PubMed ID: 28215634 [TBL] [Abstract][Full Text] [Related]
65. The Current State of Naïve Human Pluripotency. Dodsworth BT; Flynn R; Cowley SA Stem Cells; 2015 Nov; 33(11):3181-6. PubMed ID: 26119873 [TBL] [Abstract][Full Text] [Related]
66. FGF2 Signaling Plays an Important Role in Maintaining Pluripotent State of Pig Embryonic Germ Cells. Choi KH; Lee DK; Oh JN; Son HY; Lee CK Cell Reprogram; 2018 Oct; 20(5):301-311. PubMed ID: 30204498 [TBL] [Abstract][Full Text] [Related]
67. Folic Acid Supports Pluripotency and Reprogramming by Regulating LIF/STAT3 and MAPK/ERK Signaling. Wei T; Jia W; Qian Z; Zhao L; Yu Y; Li L; Wang C; Zhang W; Liu Q; Yang D; Wang G; Wang Z; Wang K; Duan T; Kang J Stem Cells Dev; 2017 Jan; 26(1):49-59. PubMed ID: 27676194 [TBL] [Abstract][Full Text] [Related]
68. Human Caesarean scar-derived feeder cells: a novel feeder cell type for culturing human pluripotent stem cells without exogenous basic fibroblast growth factor supplementation. Pavarajarn W; Rungsiwiwut R; Numchaisrika P; Virutamasen P; Pruksananonda K Reprod Fertil Dev; 2020 Jun; 32(9):822-834. PubMed ID: 32527373 [TBL] [Abstract][Full Text] [Related]
69. Derivation of pluripotent stem cells from nascent undifferentiated teratoma. An Y; Sekinaka T; Tando Y; Okamura D; Tanaka K; Ito-Matsuoka Y; Takehara A; Yaegashi N; Matsui Y Dev Biol; 2019 Feb; 446(1):43-55. PubMed ID: 30529251 [TBL] [Abstract][Full Text] [Related]
70. X chromosome inactivation in human pluripotent stem cells as a model for human development: back to the drawing board? Geens M; Chuva De Sousa Lopes SM Hum Reprod Update; 2017 Sep; 23(5):520-532. PubMed ID: 28582519 [TBL] [Abstract][Full Text] [Related]
71. Stability of Imprinting and Differentiation Capacity in Naïve Human Cells Induced by Chemical Inhibition of CDK8 and CDK19. Bernad R; Lynch CJ; Urdinguio RG; Stephan-Otto Attolini C; Fraga MF; Serrano M Cells; 2021 Apr; 10(4):. PubMed ID: 33921436 [TBL] [Abstract][Full Text] [Related]
72. A Primitive Growth Factor, NME7AB , Is Sufficient to Induce Stable Naïve State Human Pluripotency; Reprogramming in This Novel Growth Factor Confers Superior Differentiation. Carter MG; Smagghe BJ; Stewart AK; Rapley JA; Lynch E; Bernier KJ; Keating KW; Hatziioannou VM; Hartman EJ; Bamdad CC Stem Cells; 2016 Apr; 34(4):847-59. PubMed ID: 26749426 [TBL] [Abstract][Full Text] [Related]
73. Pluripotent stem cells in regenerative medicine: challenges and recent progress. Tabar V; Studer L Nat Rev Genet; 2014 Feb; 15(2):82-92. PubMed ID: 24434846 [TBL] [Abstract][Full Text] [Related]
74. Lessons from the heart: mirroring electrophysiological characteristics during cardiac development to in vitro differentiation of stem cell derived cardiomyocytes. van den Heuvel NH; van Veen TA; Lim B; Jonsson MK J Mol Cell Cardiol; 2014 Feb; 67():12-25. PubMed ID: 24370890 [TBL] [Abstract][Full Text] [Related]
75. Neural stem cells derived from epiblast stem cells display distinctive properties. Jang HJ; Kim JS; Choi HW; Jeon I; Choi S; Kim MJ; Song J; Do JT Stem Cell Res; 2014 Mar; 12(2):506-16. PubMed ID: 24463498 [TBL] [Abstract][Full Text] [Related]
76. Multi-omic Profiling Reveals Dynamics of the Phased Progression of Pluripotency. Yang P; Humphrey SJ; Cinghu S; Pathania R; Oldfield AJ; Kumar D; Perera D; Yang JYH; James DE; Mann M; Jothi R Cell Syst; 2019 May; 8(5):427-445.e10. PubMed ID: 31078527 [TBL] [Abstract][Full Text] [Related]
77. Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Lee MO; Moon SH; Jeong HC; Yi JY; Lee TH; Shim SH; Rhee YH; Lee SH; Oh SJ; Lee MY; Han MJ; Cho YS; Chung HM; Kim KS; Cha HJ Proc Natl Acad Sci U S A; 2013 Aug; 110(35):E3281-90. PubMed ID: 23918355 [TBL] [Abstract][Full Text] [Related]
78. Establishment and Characterization of Naïve Pluripotency in Human Embryonic Stem Cells. Warrier S; Popovic M; Van der Jeught M; Heindryckx B Methods Mol Biol; 2016; 1516():13-46. PubMed ID: 27044048 [TBL] [Abstract][Full Text] [Related]
79. Stepwise differentiation from naïve state pluripotent stem cells to functional primordial germ cells through an epiblast-like state. Hayashi K; Saitou M Methods Mol Biol; 2013; 1074():175-83. PubMed ID: 23975813 [TBL] [Abstract][Full Text] [Related]