These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
454 related articles for article (PubMed ID: 29939219)
1. Robust clustering of noisy high-dimensional gene expression data for patients subtyping. Coretto P; Serra A; Tagliaferri R Bioinformatics; 2018 Dec; 34(23):4064-4072. PubMed ID: 29939219 [TBL] [Abstract][Full Text] [Related]
2. Robust and sparse correlation matrix estimation for the analysis of high-dimensional genomics data. Serra A; Coretto P; Fratello M; Tagliaferri R; Stegle O Bioinformatics; 2018 Feb; 34(4):625-634. PubMed ID: 29040390 [TBL] [Abstract][Full Text] [Related]
3. Robust correlation estimation and UMAP assisted topological analysis of omics data for disease subtyping. Rather AA; Chachoo MA Comput Biol Med; 2023 Mar; 155():106640. PubMed ID: 36774889 [TBL] [Abstract][Full Text] [Related]
4. Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering. Ahmad A; Fröhlich H Bioinformatics; 2017 Nov; 33(22):3558-3566. PubMed ID: 28961917 [TBL] [Abstract][Full Text] [Related]
5. Weighted dimensionality reduction and robust Gaussian mixture model based cancer patient subtyping from gene expression data. Rafique O; Mir AH J Biomed Inform; 2020 Dec; 112():103620. PubMed ID: 33188907 [TBL] [Abstract][Full Text] [Related]
6. Spectral clustering based on learning similarity matrix. Park S; Zhao H Bioinformatics; 2018 Jun; 34(12):2069-2076. PubMed ID: 29432517 [TBL] [Abstract][Full Text] [Related]
7. PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data. Lemsara A; Ouadfel S; Fröhlich H BMC Bioinformatics; 2020 Apr; 21(1):146. PubMed ID: 32299344 [TBL] [Abstract][Full Text] [Related]
8. NEMO: cancer subtyping by integration of partial multi-omic data. Rappoport N; Shamir R Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637 [TBL] [Abstract][Full Text] [Related]
9. Using association signal annotations to boost similarity network fusion. Ruan P; Wang Y; Shen R; Wang S Bioinformatics; 2019 Oct; 35(19):3718-3726. PubMed ID: 30863842 [TBL] [Abstract][Full Text] [Related]
10. COPS: A novel platform for multi-omic disease subtype discovery via robust multi-objective evaluation of clustering algorithms. Rintala TJ; Fortino V PLoS Comput Biol; 2024 Aug; 20(8):e1012275. PubMed ID: 39102448 [TBL] [Abstract][Full Text] [Related]
11. A cross-species bi-clustering approach to identifying conserved co-regulated genes. Sun J; Jiang Z; Tian X; Bi J Bioinformatics; 2016 Jun; 32(12):i137-i146. PubMed ID: 27307610 [TBL] [Abstract][Full Text] [Related]
12. Consensus clustering applied to multi-omics disease subtyping. Brière G; Darbo É; Thébault P; Uricaru R BMC Bioinformatics; 2021 Jul; 22(1):361. PubMed ID: 34229612 [TBL] [Abstract][Full Text] [Related]
13. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data. Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893 [TBL] [Abstract][Full Text] [Related]
14. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases. Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618 [TBL] [Abstract][Full Text] [Related]
15. Clusterdv: a simple density-based clustering method that is robust, general and automatic. Marques JC; Orger MB Bioinformatics; 2019 Jun; 35(12):2125-2132. PubMed ID: 30407500 [TBL] [Abstract][Full Text] [Related]
16. Deep structure integrative representation of multi-omics data for cancer subtyping. Yang B; Yang Y; Su X Bioinformatics; 2022 Jun; 38(13):3337-3342. PubMed ID: 35639657 [TBL] [Abstract][Full Text] [Related]
17. Fast dimension reduction and integrative clustering of multi-omics data using low-rank approximation: application to cancer molecular classification. Wu D; Wang D; Zhang MQ; Gu J BMC Genomics; 2015 Dec; 16():1022. PubMed ID: 26626453 [TBL] [Abstract][Full Text] [Related]
18. GMHCC: high-throughput analysis of biomolecular data using graph-based multiple hierarchical consensus clustering. Lu Y; Yu Z; Wang Y; Ma Z; Wong KC; Li X Bioinformatics; 2022 May; 38(11):3020-3028. PubMed ID: 35451457 [TBL] [Abstract][Full Text] [Related]
19. Gaussian mixture copulas for high-dimensional clustering and dependency-based subtyping. Kasa SR; Bhattacharya S; Rajan V Bioinformatics; 2020 Jan; 36(2):621-628. PubMed ID: 31368480 [TBL] [Abstract][Full Text] [Related]
20. SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Zheng R; Li M; Liang Z; Wu FX; Pan Y; Wang J Bioinformatics; 2019 Oct; 35(19):3642-3650. PubMed ID: 30821315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]