These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 29939454)

  • 1. Nanofluidic Ion Transport and Energy Conversion through Ultrathin Free-Standing Polymeric Carbon Nitride Membranes.
    Xiao K; Giusto P; Wen L; Jiang L; Antonietti M
    Angew Chem Int Ed Engl; 2018 Aug; 57(32):10123-10126. PubMed ID: 29939454
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes.
    Xiao K; Kumru B; Chen L; Jiang L; Schmidt BVKJ; Antonietti M
    Beilstein J Nanotechnol; 2019; 10():1316-1323. PubMed ID: 31293868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power.
    Xin W; Jiang L; Wen L
    Acc Chem Res; 2021 Nov; 54(22):4154-4165. PubMed ID: 34719227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High and Stable Ionic Conductivity in 2D Nanofluidic Ion Channels between Boron Nitride Layers.
    Qin S; Liu D; Wang G; Portehault D; Garvey CJ; Gogotsi Y; Lei W; Chen Y
    J Am Chem Soc; 2017 May; 139(18):6314-6320. PubMed ID: 28418247
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic Two-Dimensional Vermiculite Nanofluidic Membranes for Stable Salinity-Gradient Energy Conversion.
    Liu Y; Ding X; Chen L; Tian W; Xu X; Zhang K
    Inorg Chem; 2023 Apr; 62(14):5400-5407. PubMed ID: 36994870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofluidic ion transport through reconstructed layered materials.
    Raidongia K; Huang J
    J Am Chem Soc; 2012 Oct; 134(40):16528-31. PubMed ID: 22998077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube.
    Siria A; Poncharal P; Biance AL; Fulcrand R; Blase X; Purcell ST; Bocquet L
    Nature; 2013 Feb; 494(7438):455-8. PubMed ID: 23446417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased ion transport and high-efficient osmotic energy conversion through aqueous stable graphitic carbon nitride/cellulose nanofiber composite membrane.
    Gao Z; Sun Z; Ahmad M; Liu Y; Wei H; Wang S; Jin Y
    Carbohydr Polym; 2022 Mar; 280():119023. PubMed ID: 35027125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineering Polymeric Nanofluidic Membranes for Efficient Ionic Transport: Biomimetic Design, Material Construction, and Advanced Functionalities.
    Chen XC; Zhang H; Liu SH; Zhou Y; Jiang L
    ACS Nano; 2022 Nov; 16(11):17613-17640. PubMed ID: 36322865
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Combination of 2D Layered Graphene Oxide and 3D Porous Cellulose Heterogeneous Membranes for Nanofluidic Osmotic Power Generation.
    Jia P; Du X; Chen R; Zhou J; Agostini M; Sun J; Xiao L
    Molecules; 2021 Sep; 26(17):. PubMed ID: 34500776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores.
    Guo W; Tian Y; Jiang L
    Acc Chem Res; 2013 Dec; 46(12):2834-46. PubMed ID: 23713693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrokinetic Energy Conversion in Self-Assembled 2D Nanofluidic Channels with Janus Nanobuilding Blocks.
    Cheng H; Zhou Y; Feng Y; Geng W; Liu Q; Guo W; Jiang L
    Adv Mater; 2017 Jun; 29(23):. PubMed ID: 28397411
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-performance ionic diode membrane for salinity gradient power generation.
    Gao J; Guo W; Feng D; Wang H; Zhao D; Jiang L
    J Am Chem Soc; 2014 Sep; 136(35):12265-72. PubMed ID: 25137214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrathin and Ultrastrong Kevlar Aramid Nanofiber Membranes for Highly Stable Osmotic Energy Conversion.
    Ding L; Xiao D; Zhao Z; Wei Y; Xue J; Wang H
    Adv Sci (Weinh); 2022 Sep; 9(25):e2202869. PubMed ID: 35780505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-Assisted Sulfonated Covalent Organic Nanosheets: Extrinsic Charge for Improved Ion Transport and Salinity-Gradient Energy Harvesting.
    Zhou S; Hu Y; Xin W; Fu L; Lin X; Yang L; Hou S; Kong XY; Jiang L; Wen L
    Adv Mater; 2023 Feb; 35(6):e2208640. PubMed ID: 36457170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Super-Assembly of Ordered Mesoporous Silica-Alumina Heterostructure Membranes with pH-Sensitive Properties for Osmotic Energy Harvesting.
    Zhou S; Xie L; Zhang L; Wen L; Tang J; Zeng J; Liu T; Peng D; Yan M; Qiu B; Liang Q; Liang K; Jiang L; Kong B
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):8782-8793. PubMed ID: 33560109
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport.
    Cao L; Liu X; Shinde DB; Chen C; Chen IC; Li Z; Zhou Z; Yang Z; Han Y; Lai Z
    Angew Chem Int Ed Engl; 2022 Feb; 61(6):e202113141. PubMed ID: 34816574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light-driven directional ion transport for enhanced osmotic energy harvesting.
    Xiao K; Giusto P; Chen F; Chen R; Heil T; Cao S; Chen L; Fan F; Jiang L
    Natl Sci Rev; 2021 Aug; 8(8):nwaa231. PubMed ID: 34691706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Ion Transport and High Energy Conversion through Hydrogel Membrane with 3D Interconnected Nanopores.
    Chen W; Wang Q; Chen J; Zhang Q; Zhao X; Qian Y; Zhu C; Yang L; Zhao Y; Kong XY; Lu B; Jiang L; Wen L
    Nano Lett; 2020 Aug; 20(8):5705-5713. PubMed ID: 32692569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-Powered Directional Nanofluidic Ion Transport in Kirigami-Made Asymmetric Photonic-Ionic Devices.
    Jia M; Kong X; Wang L; Zhang Y; Quan D; Ding L; Lu D; Jiang L; Guo W
    Small; 2020 Jan; 16(1):e1905557. PubMed ID: 31805218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.