These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 29939484)

  • 41. Near-Infrared Light Activated Formulation for the Spatially Controlled Release of CRISPR-Cas9 Ribonucleoprotein for Brain Gene Editing.
    Simões S; Lino M; Barrera A; Rebelo C; Tomatis F; Vilaça A; Breunig C; Neuner A; Peça J; González R; Carvalho A; Stricker S; Ferreira L
    Angew Chem Int Ed Engl; 2024 May; 63(21):e202401004. PubMed ID: 38497898
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A pH-responsive silica-metal-organic framework hybrid nanoparticle for the delivery of hydrophilic drugs, nucleic acids, and CRISPR-Cas9 genome-editing machineries.
    Wang Y; Shahi PK; Xie R; Zhang H; Abdeen AA; Yodsanit N; Ma Z; Saha K; Pattnaik BR; Gong S
    J Control Release; 2020 Aug; 324():194-203. PubMed ID: 32380204
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In vivo genome editing targeted towards the female reproductive system.
    Sato M; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S; Gurumurthy CB
    Arch Pharm Res; 2018 Sep; 41(9):898-910. PubMed ID: 29974342
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Harnessing heterologous and endogenous CRISPR-Cas machineries for efficient markerless genome editing in Clostridium.
    Pyne ME; Bruder MR; Moo-Young M; Chung DA; Chou CP
    Sci Rep; 2016 May; 6():25666. PubMed ID: 27157668
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CRISPR/Cas9 delivery by NIR-responsive biomimetic nanoparticles for targeted HBV therapy.
    Wang D; Chen L; Li C; Long Q; Yang Q; Huang A; Tang H
    J Nanobiotechnology; 2022 Jan; 20(1):27. PubMed ID: 34991617
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A multifunctional AAV-CRISPR-Cas9 and its host response.
    Chew WL; Tabebordbar M; Cheng JK; Mali P; Wu EY; Ng AH; Zhu K; Wagers AJ; Church GM
    Nat Methods; 2016 Oct; 13(10):868-74. PubMed ID: 27595405
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly Efficient Genome Editing of Murine and Human Hematopoietic Progenitor Cells by CRISPR/Cas9.
    Gundry MC; Brunetti L; Lin A; Mayle AE; Kitano A; Wagner D; Hsu JI; Hoegenauer KA; Rooney CM; Goodell MA; Nakada D
    Cell Rep; 2016 Oct; 17(5):1453-1461. PubMed ID: 27783956
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy.
    Zhang D; Wang G; Yu X; Wei T; Farbiak L; Johnson LT; Taylor AM; Xu J; Hong Y; Zhu H; Siegwart DJ
    Nat Nanotechnol; 2022 Jul; 17(7):777-787. PubMed ID: 35551240
    [TBL] [Abstract][Full Text] [Related]  

  • 49. New approaches to moderate CRISPR-Cas9 activity: Addressing issues of cellular uptake and endosomal escape.
    van Hees M; Slott S; Hansen AH; Kim HS; Ji HP; Astakhova K
    Mol Ther; 2022 Jan; 30(1):32-46. PubMed ID: 34091053
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A RecET-assisted CRISPR-Cas9 genome editing in Corynebacterium glutamicum.
    Wang B; Hu Q; Zhang Y; Shi R; Chai X; Liu Z; Shang X; Zhang Y; Wen T
    Microb Cell Fact; 2018 Apr; 17(1):63. PubMed ID: 29685154
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genome editing in potato via CRISPR-Cas9 ribonucleoprotein delivery.
    Andersson M; Turesson H; Olsson N; Fält AS; Ohlsson P; Gonzalez MN; Samuelsson M; Hofvander P
    Physiol Plant; 2018 Dec; 164(4):378-384. PubMed ID: 29572864
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracellular Delivery of mRNA for Cell-Selective CRISPR/Cas9 Genome Editing using Lipid Nanoparticles.
    Ma T; Chen X; Wang M
    Chembiochem; 2023 May; 24(9):e202200801. PubMed ID: 36780174
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nanoscale ATP-Responsive Zeolitic Imidazole Framework-90 as a General Platform for Cytosolic Protein Delivery and Genome Editing.
    Yang X; Tang Q; Jiang Y; Zhang M; Wang M; Mao L
    J Am Chem Soc; 2019 Mar; 141(9):3782-3786. PubMed ID: 30722666
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles.
    Luo YL; Xu CF; Li HJ; Cao ZT; Liu J; Wang JL; Du XJ; Yang XZ; Gu Z; Wang J
    ACS Nano; 2018 Feb; 12(2):994-1005. PubMed ID: 29314827
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genome editing by natural and engineered CRISPR-associated nucleases.
    Wu WY; Lebbink JHG; Kanaar R; Geijsen N; van der Oost J
    Nat Chem Biol; 2018 Jul; 14(7):642-651. PubMed ID: 29915237
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Special Focus Issue Part II: Recruitment of solid lipid nanoparticles for the delivery of CRISPR/Cas9: primary evaluation of anticancer gene editing.
    Akbaba H; Erel-Akbaba G; Senturk S
    Nanomedicine (Lond); 2021 May; 16(12):963-978. PubMed ID: 33970666
    [No Abstract]   [Full Text] [Related]  

  • 59. [CRISPR/Cas9 and gene therapy].
    Giono LE
    Medicina (B Aires); 2017; 77(5):405-409. PubMed ID: 29044017
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Engineered Cas9 extracellular vesicles as a novel gene editing tool.
    Osteikoetxea X; Silva A; Lázaro-Ibáñez E; Salmond N; Shatnyeva O; Stein J; Schick J; Wren S; Lindgren J; Firth M; Madsen A; Mayr LM; Overman R; Davies R; Dekker N
    J Extracell Vesicles; 2022 May; 11(5):e12225. PubMed ID: 35585651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.