BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 29939717)

  • 1. Low Thermal Boundary Resistance Interfaces for GaN-on-Diamond Devices.
    Yates L; Anderson J; Gu X; Lee C; Bai T; Mecklenburg M; Aoki T; Goorsky MS; Kuball M; Piner EL; Graham S
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):24302-24309. PubMed ID: 29939717
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Barrier-Layer Optimization for Enhanced GaN-on-Diamond Device Cooling.
    Zhou Y; Anaya J; Pomeroy J; Sun H; Gu X; Xie A; Beam E; Becker M; Grotjohn TA; Lee C; Kuball M
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34416-34422. PubMed ID: 28901127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystalline Interlayers for Reducing the Effective Thermal Boundary Resistance in GaN-on-Diamond.
    Field DE; Cuenca JA; Smith M; Fairclough SM; Massabuau FC; Pomeroy JW; Williams O; Oliver RA; Thayne I; Kuball M
    ACS Appl Mater Interfaces; 2020 Dec; 12(48):54138-54145. PubMed ID: 33196180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacial Thermal Conductance across Room-Temperature-Bonded GaN/Diamond Interfaces for GaN-on-Diamond Devices.
    Cheng Z; Mu F; Yates L; Suga T; Graham S
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8376-8384. PubMed ID: 31986013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Thermal Boundary Conductance across GaN/SiC Interfaces with AlN Transition Layers.
    Li R; Hussain K; Liao ME; Huynh K; Hoque MSB; Wyant S; Koh YR; Xu Z; Wang Y; Luccioni DP; Cheng Z; Shi J; Lee E; Graham S; Henry A; Hopkins PE; Goorsky MS; Khan MA; Luo T
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):8109-8118. PubMed ID: 38315970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Record-Low Thermal Boundary Resistance between Diamond and GaN-on-SiC for Enabling Radiofrequency Device Cooling.
    Malakoutian M; Field DE; Hines NJ; Pasayat S; Graham S; Kuball M; Chowdhury S
    ACS Appl Mater Interfaces; 2021 Dec; 13(50):60553-60560. PubMed ID: 34875169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Properties for Thermally Conductive Interfaces with Wide Band Gap Materials.
    Khan S; Angeles F; Wright J; Vishwakarma S; Ortiz VH; Guzman E; Kargar F; Balandin AA; Smith DJ; Jena D; Xing HG; Wilson R
    ACS Appl Mater Interfaces; 2022 Aug; 14(31):36178-36188. PubMed ID: 35895030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Transport and Mechanical Stress Mapping of a Compression Bonded GaN/Diamond Interface for Vertical Power Devices.
    Delmas W; Jarzembski A; Bahr M; McDonald A; Hodges W; Lu P; Deitz J; Ziade E; Piontkowski ZT; Yates L
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):11003-11012. PubMed ID: 38373710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Thermal Boundary Conductance across Bonded Heterogeneous GaN-SiC Interfaces.
    Mu F; Cheng Z; Shi J; Shin S; Xu B; Shiomi J; Graham S; Suga T
    ACS Appl Mater Interfaces; 2019 Sep; 11(36):33428-33434. PubMed ID: 31408316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High Thermal Stability and Low Thermal Resistance of Large Area GaN/3C-SiC/Diamond Junctions for Practical Device Processes.
    Kagawa R; Cheng Z; Kawamura K; Ohno Y; Moriyama C; Sakaida Y; Ouchi S; Uratani H; Inoue K; Nagai Y; Shigekawa N; Liang J
    Small; 2024 Mar; 20(13):e2305574. PubMed ID: 37964293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated Interfacial Thermal Conductance between Cu and Diamond by a TiC Interlayer for Thermal Management Applications.
    Chang G; Sun F; Wang L; Che Z; Wang X; Wang J; Kim MJ; Zhang H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):26507-26517. PubMed ID: 31283161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Thermal Boundary Resistance on Thermal Management of Gallium-Nitride-Based Semiconductor Devices: A Review.
    Zhan T; Xu M; Cao Z; Zheng C; Kurita H; Narita F; Wu YJ; Xu Y; Wang H; Song M; Wang W; Zhou Y; Liu X; Shi Y; Jia Y; Guan S; Hanajiri T; Maekawa T; Okino A; Watanabe T
    Micromachines (Basel); 2023 Nov; 14(11):. PubMed ID: 38004933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thick, Adherent Diamond Films on AlN with Low Thermal Barrier Resistance.
    Mandal S; Yuan C; Massabuau F; Pomeroy JW; Cuenca J; Bland H; Thomas E; Wallis D; Batten T; Morgan D; Oliver R; Kuball M; Williams OA
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40826-40834. PubMed ID: 31603642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFT-Based Studies on Carbon Adsorption on the wz-GaN Surfaces and the Influence of Point Defects on the Stability of the Diamond-GaN Interfaces.
    Sznajder M; Hrytsak R
    Materials (Basel); 2021 Oct; 14(21):. PubMed ID: 34772058
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.
    Cheng Z; Bougher T; Bai T; Wang SY; Li C; Yates L; Foley BM; Goorsky M; Cola BA; Faili F; Graham S
    ACS Appl Mater Interfaces; 2018 Feb; 10(5):4808-4815. PubMed ID: 29328632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Cost Nanostructures from Nanoparticle-Assisted Large-Scale Lithography Significantly Enhance Thermal Energy Transport across Solid Interfaces.
    Lee E; Menumerov E; Hughes RA; Neretina S; Luo T
    ACS Appl Mater Interfaces; 2018 Oct; 10(40):34690-34698. PubMed ID: 30209944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial Thermal Conductance between Cu and Diamond with Interconnected W-W
    Zhang Y; Wang Z; Li N; Che Z; Liu X; Chang G; Hao J; Dai J; Wang X; Sun F; Zhang H
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):35215-35228. PubMed ID: 35878880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Boundary Resistance Extraction of GaN-on-Diamond Substrate from Transmission Line Method Pattern Using Micro-Raman Spectroscopy and Thermal Simulation.
    Ki RS; Seo KS; Cha HY
    J Nanosci Nanotechnol; 2021 Aug; 21(8):4434-4437. PubMed ID: 33714340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seed Dibbling Method for the Growth of High-Quality Diamond on GaN.
    Soleimanzadeh R; Naamoun M; Floriduz A; Khadar RA; van Erp R; Matioli E
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):43516-43523. PubMed ID: 34464085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of GaN/Diamond Heterointerface and Interfacial Chemical Bonding State for Highly Efficient Device Design.
    Liang J; Kobayashi A; Shimizu Y; Ohno Y; Kim SW; Koyama K; Kasu M; Nagai Y; Shigekawa N
    Adv Mater; 2021 Oct; 33(43):e2104564. PubMed ID: 34498296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.